Exploiting tropical fruit processing coproducts as circular resources to promote the growth and maintain the culturability and functionality of probiotic lactobacilli
July 05, 2024 | Food Microbiology |
A study by the Federal University of Paraíba and the Federal Institute of Sertão de Pernambuco in Brazil examined the use of acerola, cashew, and guava fruit processing coproducts to support the growth and viability of probiotics. The research focused on how these fruit by-products can enhance the cultivation and preservation of Lactobacillus acidophilus LA-05 and Lacticaseibacillus paracasei L-10, two common probiotic strains.
The study found that probiotic bacteria cultivated in these fruit coproducts achieved high cell counts and produced organic acids, phenolic compounds, and antioxidant activity during fermentation. These coproducts also improved the survival of probiotics after freeze-drying and prolonged their viability during 120 days of refrigerated storage. Additionally, probiotics grown in these substrates showed better resilience during simulated gastrointestinal digestion, maintaining a higher proportion of metabolically active cells.
The findings highlight the potential of fruit processing coproducts as a sustainable substrate for cultivating probiotics, enhancing their bioactive properties, and offering an innovative approach to produce high-quality probiotic products. This research suggests a circular strategy that not only supports probiotic growth but also adds value to fruit processing waste.
Read more
Viewed Articles
July 05, 2024 | Food Microbiology | A study by the Federal University of ParaÃba and the Federal Institute of Sertão de Pernambuco in Brazil examined the use of acerola, cashew, and guava fruit proces
Read More
March 02, 2024 | Journal of Food Science and Technology |Research conducted by the ICAR-Central Institute of Agricultural Engineering in India concentrated on processing and enhancing the value of ten
August 16, 2024 | Food Hydrocolloids |The innovative use of dragon fruit stem extract (DSE), an agricultural byproduct, in synthesizing silver nanoparticles (AgNPs) and incorporating them into chitosa
October 08, 2024 | Food Frontiers |A review exploring the potential of tropical fruit-derived starch as a sustainable and valuable resource was conducted by researchers from Northwest A&F University,
December 11, 2024 | Food Biophysics|This study, conducted by researchers from Costa Rica (Universidad de Costa Rica) and Spain (Universidad de Córdoba), explores the efficient valorization of red pita
June 07, 2024 | Journal of Agriculture and Food Research |Khon Kaen University in Thailand has conducted a study exploring the potential of utilizing tropical fruit waste, especially fruit peels, as v