Search
2025-01-23
Analysis of soil bacterial diversity and effective control of mango anthracnose

December 02, 2024 | Physiological and Molecular Plant Pathology |

Researchers from the Guangxi Academy of Sciences and the Chinese Academy of Sciences in China conducted a study to investigate soil bacterial diversity and its relationship with soil properties in healthy and stunted mango trees. Using metagenomic sequencing, they analyzed soil samples from 32 mango trees in Leye County, Baise City, China, to better understand the role of soil microbiomes in mango growth and health.

The study revealed significant differences in bacterial diversity and abundance between healthy and stunted mango soils. Joint analysis with soil physical and chemical properties showed that several bacterial taxa were strongly correlated with key soil parameters such as pH, organic matter, total nitrogen, phosphorus, and potassium. For instance, Candidate, Acidobacterium, and Pelagibius were positively correlated with pH, while Paraburkholderia and Streptosporangiales showed negative correlations.

The researchers also isolated a pathogen (M1) responsible for mango anthracnose and identified a beneficial rhizosphere bacterium, Leclercia adecarboxylata MHA-2-F1, which exhibited multiple plant-growth-promoting traits. This bacterium not only inhibited the mango anthracnose pathogen but also enhanced root development and plant wet weight.

These findings provide valuable insights into the microbial interactions affecting mango growth and disease resistance, offering pathways for sustainable agricultural practices and reduced reliance on chemical inputs.

Read more


 [AF1]Please note that all the scientific names have to be in Italic font.

Viewed Articles
Analysis of soil bacterial diversity and effective control of mango anthracnose
December 02, 2024 | Physiological and Molecular Plant Pathology |Researchers from the Guangxi Academy of Sciences and the Chinese Academy of Sciences in China conducted a study to investigate soil bac
Jan 23, 2025
Read More
In vitro multiplication of rambutan (<span style="font-style:italic;">Nephelium lappaceum </span>L.) cv. Arka Coorg Arun through nodal segments
August 31, 2025 | Vegetos | This study conducted by Arabhavi, University of Horticultural Sciences and the Central Agricultural University, India, addressed the need for efficient propagation methods
2026.01.27
A new leaf spot disease caused by <span style="font-style:italic;">Alternaria jacinthicola </span>on <span style="font-style:italic;">Durio Zibethinus </span>in China
June 26, 2025 | Journal of Phytopathology |Leaf spot disease observed on durian trees in Hainan Province, China, in July 2023 was the focus of a study conducted by the Sanya Institute of China Agricul
2025.07.28
Predicting climate change impacts on sub-tropical fruit suitability using MaxEnt: A regional study from Southern Türkiye
June 14, 2025 | Sustainability |The study, conducted by Mersin University in Türkiye, evaluated the potential of avocado and pitaya cultivation under present and future climate scenarios in the Medite
A preliminary review on the morphological and phytochemical characteristics of rambutan (<span style="font-style:italic;">Nephelium lappaceum </span>L.)
October 28, 2025 | Bioresources and Environment |Universiti Teknologi MARA Cawangan Pahang, Malaysia, conducted a preliminary review on rambutan (Nephelium lappaceum L.), examining its morphology, phy
Advances in agronomic practices, postharvest technologies, and medicinal potential of dragon fruit (<span style="font-style:italic;">Hylocereus </span> spp.): A comprehensive updated review
July 9, 2025 | Journal of Agriculture and Food Research |The study conducted by Bidhan Chandra Krishi Viswavidyalaya, India, and Persian Gulf University, Iran, provides a comprehensive review of recen
TOP