Search
2024-06-27
Reduction of the mangosteen tree ( Garcinia mangostana L.) production cycle: Effect of soil type and fertilisers

February 05, 2024 | Bulletin of the National Research Centre |

Researchers from Nangui Abrogoua University, the University of San-Pedro, and the National Agronomic Research Center (CNRA) in Côte d’Ivoire conducted a study on the effects of soil type and fertiliser on the growth of mangosteen (Garcinia mangostana). Mangosteen trees are slow-growing, typically taking 8 to 15 years to bear fruit, which hinders their adoption by farmers. This study aimed to evaluate whether different soil types and fertilisation methods could shorten the vegetative phase of mangosteen trees, facilitating wider cultivation and contributing to poverty reduction in rural areas.

The study monitored mangosteen growth over 36 months, comparing the effects of lowland soil and forest soil, and the use of foliar and granular N-P-K fertilisers. Results indicated that lowland soil significantly enhanced plant growth, with growth rates of 53.08 ± 7.30% compared to 41.51 ± 13.43% for forest soil. Fertilisation also played a crucial role, with both foliar and N-P-K fertilisers leading to earlier fruiting, beginning in the 5th year of cultivation.

In conclusion, the study demonstrated that soil type and fertilisation significantly affect mangosteen growth, with lowland soil and the use of specific fertilisers effectively reducing the juvenile phase and promoting earlier fruit production. These findings offer practical insights for improving mangosteen cultivation practices.

Read more

Viewed Articles
Reduction of the mangosteen tree (<span style="font-style:italic;"> Garcinia mangostana </span> L.) production cycle: Effect of soil type and fertilisers
February 05, 2024 | Bulletin of the National Research Centre |Researchers from Nangui Abrogoua University, the University of San-Pedro, and the National Agronomic Research Center (CNRA) in Côte d’Ivoi
Jun 27, 2024
Read More
Health benefits, supply chain challenges and opportunities of minor tropical fruits: A review
June 23, 2024 | Food Reviews International |A review of 11 regionally cultivated tropical fruits—including papaya, guava, kiwifruit, lychee, jabuticaba, passion fruit, durian, loquat, dragon fruit, ma
Sensing, adapting and thriving: how fruit crops combat abiotic stresses
April 09, 2025 | Plant, Cell and Environment | Researchers from the Chinese Academy of Sciences, China National Botanical Garden, and the University of Chinese Academy of Sciences conducted a comprehe
2025.05.27
Phylogenetic and phenotypic diversity of Neoscytalidium dimidiatum from dragon fruit (<span style="font-style:italic;">Hylocereus</span> spp.) and other hosts
March 28, 2025 | Plant Disease |The genetic and phenotypic diversity of Neoscytalidium dimidiatum, a key fungal pathogen of dragon fruit (Hylocereus spp.), was the focus of a study conducted by resear
2025.06.30
Characteristics of seven commercial Thai durian (<span style="font-style:italic;">Durio zibethinus</span>) fruits at different ripening stages
June 15, 2025 | Journal of Food Measurement and Characterization |Researchers from King Mongkut’s University of Technology Thonburi (KMUTT), Thailand, and the Department of Primary Industries, Austral
2025.08.28
Carbon sequestration potential of tropical fruit trees
April 03, 2025 | Communications in Soil Science and Plant Analysis |The carbon sequestration potential of tropical fruit trees was the focus of a comprehensive review carried out by researchers from t
TOP