Search
2024-06-27
Reduction of the mangosteen tree ( Garcinia mangostana L.) production cycle: Effect of soil type and fertilisers

February 05, 2024 | Bulletin of the National Research Centre |

Researchers from Nangui Abrogoua University, the University of San-Pedro, and the National Agronomic Research Center (CNRA) in Côte d’Ivoire conducted a study on the effects of soil type and fertiliser on the growth of mangosteen (Garcinia mangostana). Mangosteen trees are slow-growing, typically taking 8 to 15 years to bear fruit, which hinders their adoption by farmers. This study aimed to evaluate whether different soil types and fertilisation methods could shorten the vegetative phase of mangosteen trees, facilitating wider cultivation and contributing to poverty reduction in rural areas.

The study monitored mangosteen growth over 36 months, comparing the effects of lowland soil and forest soil, and the use of foliar and granular N-P-K fertilisers. Results indicated that lowland soil significantly enhanced plant growth, with growth rates of 53.08 ± 7.30% compared to 41.51 ± 13.43% for forest soil. Fertilisation also played a crucial role, with both foliar and N-P-K fertilisers leading to earlier fruiting, beginning in the 5th year of cultivation.

In conclusion, the study demonstrated that soil type and fertilisation significantly affect mangosteen growth, with lowland soil and the use of specific fertilisers effectively reducing the juvenile phase and promoting earlier fruit production. These findings offer practical insights for improving mangosteen cultivation practices.

Read more

Viewed Articles
Reduction of the mangosteen tree (<span style="font-style:italic;"> Garcinia mangostana </span> L.) production cycle: Effect of soil type and fertilisers
February 05, 2024 | Bulletin of the National Research Centre |Researchers from Nangui Abrogoua University, the University of San-Pedro, and the National Agronomic Research Center (CNRA) in Côte d’Ivoi
Jun 27, 2024
Read More
Production of sustainable tropical fruit is linked to the preservation of natural vegetation in Bahia/Brazil
July 10, 2025 | Applied Fruit Science | A study examining the relationship between tropical fruit production and land use changes in the Cerrado, Caatinga, and Mata Atlântica regions—emphasizing susta
Sunburn mitigation in dragon fruit (<span style="font-style:italic;">Hylocereus </span> spp.): unravelling genotype-specific physiological and biochemical responses
September 11, 2025 | Frontiers in Plant Science |The study conducted by the Indian Council of Agricultural Research (ICAR)–Indian Institute of Horticultural Research, India, investigated strategies to
2025.11.11
Production of sustainable tropical fruit is linked to the preservation of natural vegetation in Bahia/Brazil
July 10, 2025 | Applied Fruit Science |The study, conducted by the University of Bahia State in Brazil, examined how tropical fruit production interacts with land use and native vegetation in the Cerr
Predicting climate change impacts on sub-tropical fruit suitability using MaxEnt: A regional study from Southern TĂĽrkiye
June 14, 2025 | Sustainability |The study, conducted by Mersin University in TĂĽrkiye, evaluated the potential of avocado and pitaya cultivation under present and future climate scenarios in the Medite
HubHLH36 promotes oxalate degradation through HuAAE3 to enhance salt tolerance in pitaya (<span style="font-style:italic;">Hylocereus polyrhizus</span>)
June 7, 2025 | Plant Physiology and Biochemistry |A study investigating the molecular mechanisms underlying salt tolerance in red pitaya (Hylocereus polyrhizus), a fruit gaining global interest for it
2025.06.30
TOP