Search
Nitrogen-loss and carbon-footprint reduction by plant-rhizosphere exudates

October 4, 2023 | Trends in plant science | Source |   

Introduction: Low-carbon agriculture is crucial for addressing climate change, and rhizosphere exudates play a key role in managing the nitrogen (N) cycle in soils and water. These exudates, which are small chemical signals released by plants and microorganisms, help reduce nitrogen loss and pollution. A research team based in Foshan University in China collaborated with other researchers from China and Australia in conducting a research review on biological nitrification inhibitors (BNIs), denitrification inhibitors (BDIs), and denitrification promoters (BDPs) in terms of controling greenhouse gas emissions and N runoff. 

Key findings: BNIs and BDIs help reduce N2O emissions and improve nitrogen use efficiency, while BDPs enhance nitrogen removal in aquatic systems. Implementing plants with enhanced BNI/BDI/BDP traits, developing green fertilizers, and using bioagents for water purification are promising strategies. Genetic engineering and breeding could further optimize these traits, but careful consideration is needed to avoid negative effects on plant growth and soil microorganisms.

Rhizosphere exudates also impact microbial communities and can contribute to carbon sequestration, aiding in carbon neutrality. However, more research is needed to understand their effects across different conditions and to make them cost-effective. Overall, improving our knowledge of rhizosphere exudates will support low-carbon agriculture and environmental sustainability.

Figure | Application scenarios of small-molecule rhizosphere exudates to achieve low-carbon agriculture. 1) High-biological nitrification inhibition (BNI)/biological denitrification inhibition (BDI) plant varieties are selected, and BNI/BDI-enhanced green crop cultivars can be developed via genetic engineering to optimize the synthesis and secretion of rhizosphere exudates; (2) green tillage management involving intercropping or rotation of crops with high-BNI/BDI-synthetic capacity; (3) addition of specific rhizosphere exudates (BNIs and BDIs) as green nitrogen (N)-fertilizer synergists to N fertilizer; (4) when excessive N fertilizer is lost to aquatic environments, rhizosphere secretions can be applied as green water purification agents to remove N from eutrophic water [62], or biological denitrification promotion (BDP)-enhanced aquatic plants can be deployed. These technologies can be applied together to achieve lower carbon emissions.

 

Viewed Articles
Nitrogen-loss and carbon-footprint reduction by plant-rhizosphere exudates
October 4, 2023 | Trends in plant science | Source |   Introduction: Low-carbon agriculture is crucial for addressing climate change, and rhizosphere exudates play a key role in managing the nitrogen
Read More
Addressing dairy industry's scope 3 greenhouse gas emissions by efficiently managing farm carbon footprints
April, 2023 | Environmental Challenges | Source |  Introduction: Upstream greenhouse gas (GHG) emissions (i.e. scope 3)—accounting for 70–90% of the dairy industry’s total emissions—pose a persistent
Opportunities for mitigating net system greenhouse gas emissions in Southeast Asian rice production: A systematic review
February 28, 2024 | Agriculture, Ecosystems & Environment | Source |  Introduction: Despite existing mitigation efforts, integrated approaches addressing system-wide emissions—including soil organic c
Greenhouse gas mitigation requires caution
June 6, 2024 | Science | Source | Introduction: Methane (CH₄) and nitrous oxide (N₂O), greenhouse gases (GHGs) far more potent than CO₂, are emitted via microbial activity in diverse ecosystems. Biolo
A hybrid sustainability performance measurement approach for fresh food cold supply chains
April 20, 2023 | Journal of Cleaner Production | Source |  Introduction: Fresh food cold supply chains (CSCs) in developing countries face major sustainability issues, including food waste, high energ
Cradle-to-grave emissions from food loss and waste represent half of total greenhouse gas emissions from food systems
March 13, 2023 | Nature Food | Source |  Introduction: Food loss and waste (FLW) are major contributors to global GHG emissions, yet their full impact across the food system has been underexplored. A
TOP