Search
Deep-C storage: Biological, chemical and physical strategies to enhance carbon stocks in agricultural subsoils

July 1, 2022 | Soil Biology and Biochemistry | Source |   

Introduction: Soil is a major carbon reservoir, but agricultural practices have led to significant losses of soil organic carbon (SOC), impacting soil health and increasing greenhouse gas emissions. While topsoil-focused strategies to retain SOC exist, they have limitations due to high carbon turnover. Emerging interest in subsoil carbon sequestration, which offers longer-term storage, is growing, but challenges remain in understanding and developing effective strategies for deep soil carbon management. A research team based in Bengore University in UK collaborates with international researchers from the US, Germany, Australia, and Russia in exploring potential strategies and gaps. 

Key findings: Subsoils hold significant potential for long-term carbon storage, containing more carbon than topsoils, much of which is thousands of years old. However, this potential has not been fully realized, particularly in agriculture. Various strategies like deep-rooting plants, biochar burial, and deep ploughing have been proposed to enhance subsoil carbon storage, but they need further evaluation. This review identifies key factors influencing subsoil carbon cycling, evaluates current strategies, and highlights gaps in knowledge. Subsoils, although complex and variable, may be better suited for long-term carbon sequestration than topsoils, offering additional benefits like improved water retention and nutrient use in crops. The review emphasizes the need for more comprehensive studies, better mapping of subsoil carbon, and the inclusion of subsoils in carbon models and policies.

 

Figure | Conceptual diagram of the top- and sub-soil C cycles. demonstrating the major SOM (soil organic matter) inputs (in green boxes); the primary components determining soil OM persistence (in cyan); agricultural management (in grey box); and losses (in orange boxes and teal arrows) in an arable system. POM is particulate organic matter and DOM is dissolved organic matter. Dashed arrows represent mechanisms that depend on certain soil characteristics to occur or that they occur at very low rates.

Viewed Articles
Deep-C storage: Biological, chemical and physical strategies to enhance carbon stocks in agricultural subsoils
July 1, 2022 | Soil Biology and Biochemistry | Source |   Introduction: Soil is a major carbon reservoir, but agricultural practices have led to significant losses of soil organic carbon (SOC), impact
Ireland’ Department of Agriculture, Food and the Marine – Open Data
Department of Agriculture, Food and the Marine, Ireland | Source The Department of Agriculture, Food, and the Marine proudly presents its Open Data Portal, a valuable and extensive resource encompassi
Read More
Mulberry based agroforestry system and canopy management practices to combat soil erosion and enhancing carbon sequestration in degraded lands of Himalayan foothills
December, 2024 | Environmental and Sustainability Indicators | Source |  Introduction: Agroforestry offers a cost-effective solution for restoring degraded mountain lands by stabilizing soil, reducing
Soil carbon sequestration increment and carbon-negative emissions in alternate wetting and drying paddy ecosystems through biochar incorporation
July 1, 2024 | Agricultural Water Management | Source |  Introduction: Alternate wetting and drying (AWD) is a widely adopted water-saving irrigation technique in Asian rice-producing countries that i
Greenhouse gas emissions and carbon sequestration in organic dehesa livestock farms. Does technical-economic management matters?
October 20, 2022 | Journal of Cleaner Production | Source |  Introduction: While organic livestock systems are often hailed as environmentally friendly, their greenhouse gas (GHG) emissions and carbon
The potential of biochar incorporation into agricultural soils to promote sustainable agriculture: Insights from soil health, crop productivity, greenhouse gas emission mitigation and feasibility perspectives—A critical review
November 11, 2024 | Reviews in Environmental Science and Bio/Technology | Source |  Introduction: Addressing the growing threat of soil degradation, researchers from the University of Prince Edward Is
Carbon sequestration via shellfish farming: A potential negative emissions technology
January, 2023 | Renewable and Sustainable Energy Reviews | Source |  Introduction: Achieving global climate goals requires practical, low-energy negative emissions technologies (NETs). Researchers fro
TOP