Search
Materials, fuels, upgrading, economy, and life cycle assessment of the pyrolysis of algal and lignocellulosic biomass: a review

February 24, 2023 | Environmental Chemistry Letters | Source

Introduction: Climate change drives the need for advanced, carbon-neutral methods to produce materials and fuels. Biomass pyrolysis, the process of heating organic material in the absence of oxygen, is a key focus in this area. This review by international consortium of researchers from UK, Japan, China, Taiwan, and Egypt examines the pyrolysis of algal and lignocellulosic biomass, highlighting product types, upgrading techniques, economic feasibility, and life cycle assessments. 

Key findings

The key products from pyrolysis are bio-oil, syngas, and biochar. Upgrading methods include hot vapor filtration, solvent addition, and steam reforming. Economic evaluations show that pyrolysis can be profitable, with factors like feedstock type, temperature, and reaction time affecting product yields. Pyrolysis mechanisms involve breaking bonds and forming new compounds. Biochar can sequester carbon, potentially removing up to 2.75 gigatons of CO2 annually.

Bio-oil is the primary product from cellulosic biomass, while lignin-rich biomass yields more biochar. Pyrolysis conditions like temperature, heating rate, and residence time crucially influence the product distribution. Higher temperatures increase syngas output but reduce biochar.

Recent life cycle assessments indicate that using waste as feedstock is environmentally beneficial compared to growing energy crops. Pyrolysis is effective for producing sustainable bio-oil and biochar, which can be further refined for advanced materials and chemical recovery.

 

Figure | Lignocellulosic biomass degradation pathways. Lignocellulosic biomass degrades independently at a wide range of temperatures, producing target products, and byproducts. Therefore, selecting a particular biomass feedstock may have a meaningful impact on the final product yield.

Viewed Articles
Materials, fuels, upgrading, economy, and life cycle assessment of the pyrolysis of algal and lignocellulosic biomass: a review
February 24, 2023 | Environmental Chemistry Letters | Source | Introduction: Climate change drives the need for advanced, carbon-neutral methods to produce materials and fuels. Biomass pyrolysis, the
Read More
A meta-analysis on the mitigation measures of methane emissions in Chinese rice paddy
March, 2024 | Resources, Conservation and Recycling | Source |  Introduction: China being the largest rice producer, representing 21.75% of global methane (CH₄) emissions from rice cultivation, thus m
Promoting net-zero economy through climate-smart agriculture: transition towards sustainability
June 27, 2023 | Sustainability Science | Source | Introduction: Climate-Smart Agriculture (CSA) offers a pathway to achieve a net-zero economy by balancing agricultural productivity with environmental
Climate-smart fisheries: CO2 emissions reduction and food security are complementary
January 1, 2024 | Marine Policy | Source | Introduction: As climate change impacts intensify, there is growing recognition of the need to align fisheries management with climate goals. In the Global N
The development of fishery-photovoltaic complementary industry and the studies on its environmental, ecological and economic effects in China: A review
September 1, 2024 | Energy Nexus | Source | Introduction: In China, the fishery-photovoltaic complementary industry (FPCI, also known as aquavoltaics) merges aquaculture with solar energy by installin
Co-benefits of forest carbon projects in Southeast Asia
February 10, 2022 | Nature Sustainability | Source | Introduction: An international research team led by principal investigators from University of Adelaide in Australia and National University of Sin
TOP