Search
Materials, fuels, upgrading, economy, and life cycle assessment of the pyrolysis of algal and lignocellulosic biomass: a review

February 24, 2023 | Environmental Chemistry Letters | Source

Introduction: Climate change drives the need for advanced, carbon-neutral methods to produce materials and fuels. Biomass pyrolysis, the process of heating organic material in the absence of oxygen, is a key focus in this area. This review by international consortium of researchers from UK, Japan, China, Taiwan, and Egypt examines the pyrolysis of algal and lignocellulosic biomass, highlighting product types, upgrading techniques, economic feasibility, and life cycle assessments. 

Key findings

The key products from pyrolysis are bio-oil, syngas, and biochar. Upgrading methods include hot vapor filtration, solvent addition, and steam reforming. Economic evaluations show that pyrolysis can be profitable, with factors like feedstock type, temperature, and reaction time affecting product yields. Pyrolysis mechanisms involve breaking bonds and forming new compounds. Biochar can sequester carbon, potentially removing up to 2.75 gigatons of CO2 annually.

Bio-oil is the primary product from cellulosic biomass, while lignin-rich biomass yields more biochar. Pyrolysis conditions like temperature, heating rate, and residence time crucially influence the product distribution. Higher temperatures increase syngas output but reduce biochar.

Recent life cycle assessments indicate that using waste as feedstock is environmentally beneficial compared to growing energy crops. Pyrolysis is effective for producing sustainable bio-oil and biochar, which can be further refined for advanced materials and chemical recovery.

 

Figure | Lignocellulosic biomass degradation pathways. Lignocellulosic biomass degrades independently at a wide range of temperatures, producing target products, and byproducts. Therefore, selecting a particular biomass feedstock may have a meaningful impact on the final product yield.

Viewed Articles
Materials, fuels, upgrading, economy, and life cycle assessment of the pyrolysis of algal and lignocellulosic biomass: a review
February 24, 2023 | Environmental Chemistry Letters | Source | Introduction: Climate change drives the need for advanced, carbon-neutral methods to produce materials and fuels. Biomass pyrolysis, the
Read More
Cradle-to-grave emissions from food loss and waste represent half of total greenhouse gas emissions from food systems
March 13, 2023 | Nature Food | Source |  Introduction: Food loss and waste (FLW) are major contributors to global GHG emissions, yet their full impact across the food system has been underexplored. A
Challenges and prospects for agricultural greenhouse gas mitigation pathways consistent with the Paris Agreement
May 22, 2020 | Frontiers in Sustainable Food Systems |  Introduction: Global pathways consistent with the Paris Agreement rely on substantial reductions in agricultural methane (CH4) and N2O alongside
Transitioning to low-carbon agriculture: the non-linear role of digital inclusive finance in China’s agricultural carbon emissions
June 24, 2024 | Humanities and Social Sciences Communications |  Introduction: Digital inclusive finance is widely promoted as an enabler of green transitions, yet its environmental impacts in agricul
Toward Low-Carbon Rice Production in China: Historical Changes, Driving Factors, and Mitigation Potential
March 19, 2024 | Environmental Science & Technology | Source |  Introduction: This study, conducted by researchers from Hunan University and the Chinese Academy of Sciences, evaluates the historical c
Greenhouse gas emission from rice fields: a review from Indian context
April 27, 2021 | Environmental Science and Pollution Research | Source |  Introduction: This review, led by scientists from the Department of Environmental Sciences at Central University of Jharkhand
TOP