Search
Materials, fuels, upgrading, economy, and life cycle assessment of the pyrolysis of algal and lignocellulosic biomass: a review

February 24, 2023 | Environmental Chemistry Letters | Source

Introduction: Climate change drives the need for advanced, carbon-neutral methods to produce materials and fuels. Biomass pyrolysis, the process of heating organic material in the absence of oxygen, is a key focus in this area. This review by international consortium of researchers from UK, Japan, China, Taiwan, and Egypt examines the pyrolysis of algal and lignocellulosic biomass, highlighting product types, upgrading techniques, economic feasibility, and life cycle assessments. 

Key findings

The key products from pyrolysis are bio-oil, syngas, and biochar. Upgrading methods include hot vapor filtration, solvent addition, and steam reforming. Economic evaluations show that pyrolysis can be profitable, with factors like feedstock type, temperature, and reaction time affecting product yields. Pyrolysis mechanisms involve breaking bonds and forming new compounds. Biochar can sequester carbon, potentially removing up to 2.75 gigatons of CO2 annually.

Bio-oil is the primary product from cellulosic biomass, while lignin-rich biomass yields more biochar. Pyrolysis conditions like temperature, heating rate, and residence time crucially influence the product distribution. Higher temperatures increase syngas output but reduce biochar.

Recent life cycle assessments indicate that using waste as feedstock is environmentally beneficial compared to growing energy crops. Pyrolysis is effective for producing sustainable bio-oil and biochar, which can be further refined for advanced materials and chemical recovery.

 

Figure | Lignocellulosic biomass degradation pathways. Lignocellulosic biomass degrades independently at a wide range of temperatures, producing target products, and byproducts. Therefore, selecting a particular biomass feedstock may have a meaningful impact on the final product yield.

Viewed Articles
Materials, fuels, upgrading, economy, and life cycle assessment of the pyrolysis of algal and lignocellulosic biomass: a review
February 24, 2023 | Environmental Chemistry Letters | Source | Introduction: Climate change drives the need for advanced, carbon-neutral methods to produce materials and fuels. Biomass pyrolysis, the
Read More
Conversion of food waste to energy: A focus on sustainability and life cycle assessment
October 15, 2021 | Fuel | Source | Introduction: A research team from SRM Institute of Science and Technology and Sri Sivasubramaniya Nadar College of Engineering in India reviews sustainable pathways
Greenhouse gas mitigation requires caution
June 6, 2024 | Science | Source | Introduction: Methane (CH₄) and nitrous oxide (N₂O), greenhouse gases (GHGs) far more potent than CO₂, are emitted via microbial activity in diverse ecosystems. Biolo
The potential of biochar incorporation into agricultural soils to promote sustainable agriculture: Insights from soil health, crop productivity, greenhouse gas emission mitigation and feasibility perspectives—A critical review
November 11, 2024 | Reviews in Environmental Science and Bio/Technology | Source |  Introduction: Addressing the growing threat of soil degradation, researchers from the University of Prince Edward Is
Livestock greenhouse gas emission and mitigation potential in China
December 15, 2023 | Journal of Environmental Management | Source |  Introduction: Livestock production is a significant source of greenhouse gas emissions (GHGE) in China, challenging the country’s 20
Cradle-to-grave emissions from food loss and waste represent half of total greenhouse gas emissions from food systems
March 13, 2023 | Nature Food | Source |  Introduction: Food loss and waste (FLW) are major contributors to global GHG emissions, yet their full impact across the food system has been underexplored. A
TOP