Search
The potential of black soldier fly to recycle nitrogen from biowaste

December 1, 2023 | Current Opinion In Green And Sustainable Chemistry | Source |  

Introduction: Insects, particularly the Black Soldier Fly (BSF), offer a promising solution for recycling nitrogen from biowaste. BSF larvae efficiently convert waste into protein-rich biomass and nutrient-rich residue, which can be used as animal feed and fertilizer. This process reduces waste, lessens the need for synthetic fertilizers, and provides an alternative protein source. Research team based in Thomas More University College in Belgium conducts a literature review on the efficiency of this nitrogen conversion, as well as managing emissions like ammonia (NH3) and nitrous oxide (N2O) for  enhancing sustainability in waste management. 

Key findings: Efficiency varies depending on the type of waste and its carbon-to-nitrogen (C/N) ratio. For example, mixing different waste types to balance the C/N ratio can improve nitrogen conversion efficiency. However, too much nitrogen or imbalanced ratios can reduce efficiency and larval growth. Additionally, during BSF treatment, nitrogen can be lost as gases like NH3 and N2O, which can negatively impact the environment. Studies reveal that emissions depend on factors like waste composition and moisture content. High moisture can increase NH3 emissions, while a balanced C/N ratio can help reduce these losses.

 

Figure | The nitrogen cycle. The nitrogen cycle comprises of several complex biological process that describes the transformation of nitrogen in various forms and its cycling through ecosystems. The major steps of the nitrogen cycle are as follows: Nitrogen fixation: dinitrogen gas (N2) is fixed from the atmosphere into ammonium (NH4+) or ammonia (NH3) by nitrogen fixing bacteria. Nitrification: nitrification is an aerobic process that occurs by nitrifying bacteria in two steps: nitritation, the oxidation of ammonia to nitrite (NO2-), and nitratation, oxidation of nitrite to nitrate (NO3-). Dissimilatory reduction (DNRA): Dissimilatory reduction of nitrite to ammonium. This process is carried out by certain bacteria and fungi under anaerobic conditions. Anammox (anaerobic ammonia oxidation): ammonium and nitrite are converted into nitrogen gas under anaerobic conditions. Assimilation: Plants and microorganisms take up the nitrate and ammonia from the soil to use as building blocks for proteins, nucleic acids and other organic compounds. Mineralization: decomposers such as fungi and bacteria break down organic matter into simpler compounds, releasing ammonia back into the soil. Denitrifiaction: in this anaerobic process nitrate and nitrite are reduced to gaseous forms of nitrogen, principally nitrous oxide (N2O) and nitrogen.

Viewed Articles
The potential of black soldier fly to recycle nitrogen from biowaste
December 1, 2023 | Current Opinion In Green And Sustainable Chemistry | Source |  Introduction: Insects, particularly the Black Soldier Fly (BSF), offer a promising solution for recycling nitrogen fro
Read More
Eating healthy or wasting less? Reducing resource footprints of food consumption
April 29, 2021 | Environmental Research Letters | Source |  Introduction: Researchers from the University of Freiburg and University of Kassel (Germany), together with the Vienna University of Economi
Future carbon emissions from global mangrove forest loss
February 28, 2021 | Global Change Biology | Source |  Introduction: Mangroves significantly contribute to global climate mitigation by storing substantial carbon, yet their continuous loss poses major
Opportunities for mitigating net system greenhouse gas emissions in Southeast Asian rice production: A systematic review
February 28, 2024 | Agriculture, Ecosystems & Environment | Source |  Introduction: Despite existing mitigation efforts, integrated approaches addressing system-wide emissions—including soil organic c
Climate change and the urgency to transform food systems
June 23, 2022 | Science |  Introduction: Without rapid changes to agriculture and food systems, the goals of the 2015 Paris Agreement will not be met. In this review, researchers led by the University
A hybrid sustainability performance measurement approach for fresh food cold supply chains
April 20, 2023 | Journal of Cleaner Production | Source |  Introduction: Fresh food cold supply chains (CSCs) in developing countries face major sustainability issues, including food waste, high energ
TOP