Search
The potential of black soldier fly to recycle nitrogen from biowaste

December 1, 2023 | Current Opinion In Green And Sustainable Chemistry | Source |  

Introduction: Insects, particularly the Black Soldier Fly (BSF), offer a promising solution for recycling nitrogen from biowaste. BSF larvae efficiently convert waste into protein-rich biomass and nutrient-rich residue, which can be used as animal feed and fertilizer. This process reduces waste, lessens the need for synthetic fertilizers, and provides an alternative protein source. Research team based in Thomas More University College in Belgium conducts a literature review on the efficiency of this nitrogen conversion, as well as managing emissions like ammonia (NH3) and nitrous oxide (N2O) for  enhancing sustainability in waste management. 

Key findings: Efficiency varies depending on the type of waste and its carbon-to-nitrogen (C/N) ratio. For example, mixing different waste types to balance the C/N ratio can improve nitrogen conversion efficiency. However, too much nitrogen or imbalanced ratios can reduce efficiency and larval growth. Additionally, during BSF treatment, nitrogen can be lost as gases like NH3 and N2O, which can negatively impact the environment. Studies reveal that emissions depend on factors like waste composition and moisture content. High moisture can increase NH3 emissions, while a balanced C/N ratio can help reduce these losses.

 

Figure | The nitrogen cycle. The nitrogen cycle comprises of several complex biological process that describes the transformation of nitrogen in various forms and its cycling through ecosystems. The major steps of the nitrogen cycle are as follows: Nitrogen fixation: dinitrogen gas (N2) is fixed from the atmosphere into ammonium (NH4+) or ammonia (NH3) by nitrogen fixing bacteria. Nitrification: nitrification is an aerobic process that occurs by nitrifying bacteria in two steps: nitritation, the oxidation of ammonia to nitrite (NO2-), and nitratation, oxidation of nitrite to nitrate (NO3-). Dissimilatory reduction (DNRA): Dissimilatory reduction of nitrite to ammonium. This process is carried out by certain bacteria and fungi under anaerobic conditions. Anammox (anaerobic ammonia oxidation): ammonium and nitrite are converted into nitrogen gas under anaerobic conditions. Assimilation: Plants and microorganisms take up the nitrate and ammonia from the soil to use as building blocks for proteins, nucleic acids and other organic compounds. Mineralization: decomposers such as fungi and bacteria break down organic matter into simpler compounds, releasing ammonia back into the soil. Denitrifiaction: in this anaerobic process nitrate and nitrite are reduced to gaseous forms of nitrogen, principally nitrous oxide (N2O) and nitrogen.

Viewed Articles
The potential of black soldier fly to recycle nitrogen from biowaste
December 1, 2023 | Current Opinion In Green And Sustainable Chemistry | Source |  Introduction: Insects, particularly the Black Soldier Fly (BSF), offer a promising solution for recycling nitrogen fro
Read More
Methane and nitrous oxide emissions in rice fields influenced with duration of cultivars and irrigation regimes
May 1, 2024 | Agriculture, Ecosystems & Environment | Source |  Introduction: Rice cultivation in Punjab, India, has increased by 56% over the last three decades, severely depleting groundwater reserv
Opportunities for mitigating net system greenhouse gas emissions in Southeast Asian rice production: A systematic review
February 28, 2024 | Agriculture, Ecosystems & Environment | Source |  Introduction: Despite existing mitigation efforts, integrated approaches addressing system-wide emissions—including soil organic c
Optimizing agricultural management in China for soil greenhouse gas emissions and yield balance: A regional heterogeneity perspective
May 1, 2024 | Journal of Cleaner Production | Source |  Introduction: Region-specific strategies are critical for China to balance crop production and environmental sustainability. This study, led by
Greenhouse gas mitigation requires caution
June 6, 2024 | Science | Source | Introduction: Methane (CH₄) and nitrous oxide (N₂O), greenhouse gases (GHGs) far more potent than CO₂, are emitted via microbial activity in diverse ecosystems. Biolo
A meta-analysis on the mitigation measures of methane emissions in Chinese rice paddy
March, 2024 | Resources, Conservation and Recycling | Source |  Introduction: China being the largest rice producer, representing 21.75% of global methane (CH₄) emissions from rice cultivation, thus m
TOP