Search
Circular bioeconomy in carbon footprint components of nonthermal processing technologies towards sustainable food system: A Review

April 30, 2024 | Trends in Food Science & Technology | Source

Introduction: A team of researchers from India, UK, and Belgium examines how nonthermal processing technologies and artificial intelligence (AI) can reduce the carbon footprint in food production, promoting sustainability. 

Key findings: Traditional food processing often requires significant energy and water use, contributing to greenhouse gas emissions. However, emerging nonthermal technologies, such as high-pressure processing, pulsed electric fields, and cold plasma, offer alternatives that use less energy and water. These methods effectively inactivate harmful microorganisms and extend the shelf life of food while preserving its nutritional quality. AI technologies, including digital twins and electronic sensors, further optimize these processes by monitoring food quality and enhancing efficiency. By integrating AI with nonthermal techniques, food production can become more sustainable, minimizing environmental impact and aligning with global sustainability goals. By adopting these technologies, the industry can contribute to a circular bioeconomy, ensuring food safety while reducing resource consumption and emissions. This shift is crucial for meeting the growing demands of a sustainable and climate-resilient food system.

 

Figure | Role of artificial intelligence and Machine learning in the food industry.

Viewed Articles
Circular bioeconomy in carbon footprint components of nonthermal processing technologies towards sustainable food system: A Review
April 30, 2024 | Trends in Food Science & Technology | Source | Introduction: A team of researchers from India, UK, and Belgium examines how nonthermal processing technologies and artificial intellige
Read More
Optimized agricultural management reduces global cropland nitrogen losses to air and water
November 12, 2024 | Nature Food | Source |  Introduction: While nitrogen (N) inputs are essential for crop productivity, N losses from croplands contribute to major environmental issues, including cli
Cradle-to-grave emissions from food loss and waste represent half of total greenhouse gas emissions from food systems
March 13, 2023 | Nature Food | Source |  Introduction: Food loss and waste (FLW) are major contributors to global GHG emissions, yet their full impact across the food system has been underexplored. A
Enhancing agroecosystem nitrogen management: microbial insights for improved nitrification inhibition
June, 2024 | Trends in Microbiology | Source |  Introduction: Excessive nitrification in agroecosystems causes nitrate leaching and N₂O emissions. Although nitrification inhibitors (NIs) reduce nitrog
Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health
January 3, 2024 | Nature Communications | Source | Introduction: Conventional intensive farming boosts yields but also drives GHG emissions, soil degradation, and climate vulnerability, especially in
Pre- and post-production processes increasingly dominate greenhouse gas emissions from agri-food systems
April 14, 2022 | Earth System Science Data | Source | Introduction: Traditional assessments have underestimated global GHG emissions from agrifood systems by focusing mainly on farm-level production a
TOP