Search
Functional diversity enhances dryland forest productivity under long-term climate change

April 24, 2024 | Science Advances | Source |

Introduction: Short-term studies suggest that plant diversity improves ecosystem resilience, particularly against drought, presenting a potential nature-based solution for climate change. However, it's unclear if these benefits persist long-term. In this study by researchers from Japan, China, Canada and Switzerland, 57 years of data from Canadian dryland forests were analyzed, showing a 1.3% per decade decline in productivity, linked to rising temperatures and decreasing water availability. 

Key findings: Notably, increasing tree functional diversity boosted productivity by 13%. While nature-based solutions like reforestation alone aren't enough to mitigate climate change, their effectiveness can be enhanced by promoting functional diversity in forest management strategies.

 

Figure | A result of the principal components analysis showing each tree species and functional trait. The first axis (PC1) represents traits associated with resource-acquisitive (positive PC1) versus resource-conservative strategies (negative PC1), while the second axis (PC2) stands for traits associated with environmental tolerance: drought tolerance (positive PC2) and resource requirements such as moisture and fertility (negative PC2). Nmass, leaf nitrogen content per leaf dry mass; Pmass, leaf phosphorus content per leaf dry mass; Amass, maximum CO2 assimilation rate per unit dry mass; Ks, sapwood-specific hydraulic conductivity; Gs, stomatal conductance; LMA, leaf mass per area; LL, leaf longevity; WD, wood density; DT abs, absolute drought tolerance; STabs, absolute shade tolerance; HydTh, hydric threshold on the data [based on climate moisture index (CMI)]; TheTh, thermophilic threshold on the data [based on mean annual temperature (MAT)]; GrowthR, relative growth rate; H20, height at 20 years, maximum (meters); Hmat, height, mature (meters); PercentH, percent height 20 years divided by mature (how much % grows when 20; years); Lifespan, tree lifespan; Resprout, resprout ability; DT rel, relative drought tolerance; STrel, relative shade tolerance; FertReq, relative fertility requirement; FiT, relative fire tolerance; FFDmin, frost-free days, minimum; MoistUse, moisture use ability; SoilDmin, root depth (minimum depth of soil required for good growth, centimeters); SA, seed abundance; SM, seed mass (milligrams); SSR, seed spread rate; SlV, seedling vigor; VSR, vegetative spread rate (see also table S3).

Viewed Articles
Functional diversity enhances dryland forest productivity under long-term climate change
April 24, 2024 | Science Advances | Source | Introduction: Short-term studies suggest that plant diversity improves ecosystem resilience, particularly against drought, presenting a potential nature-ba
Read More
Opportunities for mitigating net system greenhouse gas emissions in Southeast Asian rice production: A systematic review
February 28, 2024 | Agriculture, Ecosystems & Environment | Source | Introduction: Southeast Asia (SEA) produces 28% of global rice. As flooded rice fields account for nearly half of global crop-relat
An overview of underutilized benefits derived from Azolla as a promising biofertilizer in lowland rice production
January, 2023 | Heliyon | Source |  Introduction: Azolla, an aquatic fern with nitrogen-fixing capabilities through its symbiotic association with Aenabana azollae, has the potential to serve as an ec
Priority science can accelerate agroforestry as a natural climate solution
28 September, 2023 | nature climate change | Source |  Introduction: Agroforestry presents significant potential for sequestering up to 0.31 Peta gram of carbon (Pg C) annually— comparable to major so
Mulberry based agroforestry system and canopy management practices to combat soil erosion and enhancing carbon sequestration in degraded lands of Himalayan foothills
December, 2024 | Environmental and Sustainability Indicators | Source |  Introduction: Agroforestry offers a cost-effective solution for restoring degraded mountain lands by stabilizing soil, reducing
Potential negative effects of ocean afforestation on offshore ecosystems
April 21, 2022 | Nature Ecology & Evolution | Source | Introduction: To combat climate change, ocean afforestation is being explored as a method of carbon dioxide removal (CDR) by introducing coastal
TOP