Search
Functional diversity enhances dryland forest productivity under long-term climate change

April 24, 2024 | Science Advances | Source |

Introduction: Short-term studies suggest that plant diversity improves ecosystem resilience, particularly against drought, presenting a potential nature-based solution for climate change. However, it's unclear if these benefits persist long-term. In this study by researchers from Japan, China, Canada and Switzerland, 57 years of data from Canadian dryland forests were analyzed, showing a 1.3% per decade decline in productivity, linked to rising temperatures and decreasing water availability. 

Key findings: Notably, increasing tree functional diversity boosted productivity by 13%. While nature-based solutions like reforestation alone aren't enough to mitigate climate change, their effectiveness can be enhanced by promoting functional diversity in forest management strategies.

 

Figure | A result of the principal components analysis showing each tree species and functional trait. The first axis (PC1) represents traits associated with resource-acquisitive (positive PC1) versus resource-conservative strategies (negative PC1), while the second axis (PC2) stands for traits associated with environmental tolerance: drought tolerance (positive PC2) and resource requirements such as moisture and fertility (negative PC2). Nmass, leaf nitrogen content per leaf dry mass; Pmass, leaf phosphorus content per leaf dry mass; Amass, maximum CO2 assimilation rate per unit dry mass; Ks, sapwood-specific hydraulic conductivity; Gs, stomatal conductance; LMA, leaf mass per area; LL, leaf longevity; WD, wood density; DT abs, absolute drought tolerance; STabs, absolute shade tolerance; HydTh, hydric threshold on the data [based on climate moisture index (CMI)]; TheTh, thermophilic threshold on the data [based on mean annual temperature (MAT)]; GrowthR, relative growth rate; H20, height at 20 years, maximum (meters); Hmat, height, mature (meters); PercentH, percent height 20 years divided by mature (how much % grows when 20; years); Lifespan, tree lifespan; Resprout, resprout ability; DT rel, relative drought tolerance; STrel, relative shade tolerance; FertReq, relative fertility requirement; FiT, relative fire tolerance; FFDmin, frost-free days, minimum; MoistUse, moisture use ability; SoilDmin, root depth (minimum depth of soil required for good growth, centimeters); SA, seed abundance; SM, seed mass (milligrams); SSR, seed spread rate; SlV, seedling vigor; VSR, vegetative spread rate (see also table S3).

Viewed Articles
Functional diversity enhances dryland forest productivity under long-term climate change
April 24, 2024 | Science Advances | Source | Introduction: Short-term studies suggest that plant diversity improves ecosystem resilience, particularly against drought, presenting a potential nature-ba
Read More
Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health
January 3, 2024 | Nature Communications | Source | Introduction: Conventional intensive farming boosts yields but also drives GHG emissions, soil degradation, and climate vulnerability, especially in
Priority areas to protect mangroves and maximise ecosystem services
September 21, 2023 | Nature Communications | Source | Introduction: Human activities are threatening global biodiversity and the ecosystem services provided by mangroves. Current conservation efforts
Challenges and opportunities for achieving Sustainable Development Goals through restoration of Indonesia's mangroves
January 2, 2023 | Nature Ecology & Evolution | Source | Introduction: Indonesia, the world’s largest mangrove-rich country, has set an ambitious goal to rehabilitate 600,000 hectares of mangroves by 2
Managing tree-crops for climate mitigation. An economic evaluation trading-off carbon sequestration with market goods
July 1, 2021 | Sustainable Production and Consumption | Source | Introduction: Climate change considerations needs to be integrated into circular economy by having consumers pay for nature-based solut
Opportunities for mitigating net system greenhouse gas emissions in Southeast Asian rice production: A systematic review
February 28, 2024 | Agriculture, Ecosystems & Environment | Source |  Introduction: Despite existing mitigation efforts, integrated approaches addressing system-wide emissions—including soil organic c
TOP