Search
The development of fishery-photovoltaic complementary industry and the studies on its environmental, ecological and economic effects in China: A review

September 1, 2024 | Energy Nexus | Source |

Introduction: In China, the fishery-photovoltaic complementary industry (FPCI, also known as aquavoltaics) merges aquaculture with solar energy by installing photovoltaic (PV) panels over fish ponds, allowing for fish farming while generating electricity. Despite its rapid growth, the development model lacks comprehensive scientific data. The study led by researchers from Fudan University in China and working partners reviewed the industry's development, environmental and economic impacts, and challenges to provide insights for sustainable advancement.

Key findings: This review shows that FPCI projects are primarily located in the Yangtze River and Pearl River Basins, chosen more for their suitability for aquaculture than for solar energy potential. The shading from PV panels during summer slightly reduces water quality, including minor decreases in pH, water temperature, and dissolved oxygen. Conversely, levels of total nitrogen and ammonia nitrogen increase moderately. Zooplankton biomass generally decreases, although effects on species diversity vary by ecosystem. The shading benefits fish species that thrive in lower light conditions, potentially helping maintain fishery yields.

The model significantly reduces CO2 emission per megawatt of power generated, with the average of 978.6 tons CO2 emission per megawatt per year. The land requirement and land-use conflict are also reduced, 1.64 hectares of land is required per megawatt of power generation, compared to 3.66 hectares per megawatt in the case of land-mounted solar farms.

Economically, while there are challenges related to initial costs and long payback periods, the overall feasibility is promising with government support and technological advancements. Future research should focus on life cycle assessments, improved PV technology, and optimized aquaculture practices to enhance both environmental and economic benefits.

 

Figure | Comparison of average water quality indicators between PA and NPA in each case.

Viewed Articles
The development of fishery-photovoltaic complementary industry and the studies on its environmental, ecological and economic effects in China: A review
September 1, 2024 | Energy Nexus | Source | Introduction: In China, the fishery-photovoltaic complementary industry (FPCI, also known as aquavoltaics) merges aquaculture with solar energy by installin
Read More
Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review
May 7, 2022 | Environmental Chemistry Letters | Source | Introduction: Biochar, a recycled material created from organic waste, has diverse applications across various sectors due to its role in clima
Soil carbon sequestration increment and carbon-negative emissions in alternate wetting and drying paddy ecosystems through biochar incorporation
July 1, 2024 | Agricultural Water Management | Source |  Introduction: Alternate wetting and drying (AWD) is a widely adopted water-saving irrigation technique in Asian rice-producing countries that i
Coupled coordination and pathway analysis of food security and carbon emission efficiency under climate-smart agriculture orientation
October 20, 2024 | Science of The Total Environment | Source | Introduction: Researchers from Beijing Institute of Technology examine and compare the coordination between the two objectives of food se
A meta-analysis on the mitigation measures of methane emissions in Chinese rice paddy
March, 2024 | Resources, Conservation and Recycling | Source |  Introduction: China being the largest rice producer, representing 21.75% of global methane (CH₄) emissions from rice cultivation, thus m
Insights into the recent advances of agro-industrial waste valorization for sustainable biogas production
December 1, 2023 | Bioresource Technology | Source | Introduction: Recent years have seen a shift toward a circular economy that utilizes agro-industrial biomass waste to produce energy while reducing
TOP