Search
Soil carbon sequestration increment and carbon-negative emissions in alternate wetting and drying paddy ecosystems through biochar incorporation

July 1, 2024 | Agricultural Water Management | Source |  

Introduction: Alternate wetting and drying (AWD) is a widely adopted water-saving irrigation technique in Asian rice-producing countries that is effective in reducing CHâ‚„ emissions while maintaining crop yields. However, long-term AWD can increase Nâ‚‚O emissions, nitrogen and soil organic carbon (SOC) losses, and affect soil carbon sequestration and GHG emissions. Biochar, recognized as a negative emission technology and an effective use of straw resources, has the potential to increase soil carbon storage, improve grain yields, and suppress GHG emissions over time. However, biochar's aging effects on soil properties, GHG emissions, and crop yields remain understudied. How biochar converts rice fields to carbon negative and investigating net global warming potential (GWP) based on soil carbon sequestration is still limited, especially under AWD systems. To address this gap, researchers from Shenyang Agricultural University, China, conducted a three-year field study using a split-plot design to evaluate the effects of biochar on CHâ‚„ and Nâ‚‚O emissions, soil carbon sequestration, net GWP, and rice yield under AWD and continuous flooding (CF) irrigation.

 

Key findings: A three-year field experiment in Shenyang, China, used a split-plot design with CF and AWD irrigation, with biochar applied at 0 and 20 t/ha. CHâ‚„ and Nâ‚‚O emissions were measured using an opaque static chamber method and gas chromatography. SOC, nitrogen, soil pH, redox potential and rice yield were analyzed using potassium dichromate digestion, KCl extraction and automated analyzers.

This study demonstrated that integrating biochar with AWD significantly improved soil carbon sequestration and reduced GHG emissions. AWD irrigation significantly reduced CHâ‚„ emissions by 63-79% over three years compared to CF. However, AWD increased Nâ‚‚O emissions by 100-123%. The addition of biochar (20 t/ha) reduced CHâ‚„ emissions by 22% in the second year and 38% in the third year, while mitigating AWD-induced Nâ‚‚O emissions by 28-33%. Biochar also improved soil carbon sequestration , particularly under AWD, resulting in the highest soil carbon sequestration (56.9 t C/ha) and lowest net GWP of -23.0 t COâ‚‚-eq/ha. Grain yield was unaffected in the first year but increased by 5-11% in subsequent years with biochar application. The effects of biochar on soil properties (e.g. pH and redox potential) improved conditions for CHâ‚„ oxidation and suppressed Nâ‚‚O emissions over time. Therefore, despite increased Nâ‚‚O emissions under AWD, biochar effectively reduced GWP and GHGI by an average of 74%. Overall, compared to CF without biochar, biochar application in CF and AWD reduced net GWP by four and eight times, respectively, due to increased soil carbon. AWD with biochar achieved further reductions in GWP compared to CF with biochar. The results suggest that combining biochar with AWD offers a sustainable strategy for mitigating GHG emissions, enhancing carbon sequestration and achieving carbon-negative rice production. This approach supports climate-smart agricultural practices, especially in water-scarce regions; while further research is recommended to explore long-term impacts and wider applications.

 

Figure | Path analysis of CH4 and N2O emissions and soil environmental factors. Red arrows indicate positive impacts, blue arrows represent negative impacts, solid lines effect significantly and dotted lines effect insignificantly. Black arrows indicate contribution value of CH4 and N2O emissions to GWP. **: P < 0.01; *: P < 0.05; ns: no significant. Values indicate the strength of the relationship between the two variables.

Viewed Articles
Soil carbon sequestration increment and carbon-negative emissions in alternate wetting and drying paddy ecosystems through biochar incorporation
July 1, 2024 | Agricultural Water Management | Source |  Introduction: Alternate wetting and drying (AWD) is a widely adopted water-saving irrigation technique in Asian rice-producing countries that i
Read More
Opportunities for mitigating net system greenhouse gas emissions in Southeast Asian rice production: A systematic review
February 28, 2024 | Agriculture, Ecosystems & Environment | Source |  Introduction: Despite existing mitigation efforts, integrated approaches addressing system-wide emissions—including soil organic c
The potential of biochar incorporation into agricultural soils to promote sustainable agriculture: Insights from soil health, crop productivity, greenhouse gas emission mitigation and feasibility perspectives—A critical review
November 11, 2024 | Reviews in Environmental Science and Bio/Technology | Source |  Introduction: Addressing the growing threat of soil degradation, researchers from the University of Prince Edward Is
Methane and nitrous oxide emissions in rice fields influenced with duration of cultivars and irrigation regimes
May 1, 2024 | Agriculture, Ecosystems & Environment | Source |  Introduction: Rice cultivation in Punjab, India, has increased by 56% over the last three decades, severely depleting groundwater reserv
Greenhouse Gas Mitigation Potential of Alternate Wetting and Drying for Rice Production at National Scale—A Modeling Case Study for the Philippines
May 5, 2022 | JGR Biogeosciences | Source |  Introduction: Alternate Wetting and Drying (AWD), a technique that involves intermittently drying fields to maintain a shallow soil water table, has emerge
Climate change and livestock production: a literature review
January 15, 2022 | Atmosphere | Source | Introduction: Livestock both drives and suffers from climate change, contributing 14.5% of global GHG emissions while facing growing climate-induced stress. Re
TOP