Search
Keeping the global consumption within the planetary boundaries

November 13, 2024 | Nature | Source |

 

Introduction: Researchers from Shandong University (China) and the University of Maryland (USA) investigate the global distribution of environmental footprints across 168 countries, covering 98% of the global population. The study categorizes 201 global consumption groups by expenditure using the environmentally extended multi-regional input-output (EE-MRIO) model. This model estimates direct and indirect environmental impacts of consumption, quantifying six environmental indicators tied to planetary boundary (PB) transgressions, including CO2 emissions, land-system change, nitrogen fixation, phosphorus fertilizer use, blue-water consumption, and biosphere integrity. By addressing consumption inequality, the research aims to guide sustainable policymaking to restore ecological balance.

Key findings: The study reveals that the top 10% of global consumers are disproportionately responsible for 43% of CO2 emissions, 23% of land-system changes (HANPP), 26% of nitrogen fixation, and 25% of phosphorus use, alongside significant contributions to blue-water consumption and biosphere degradation. In contrast, the bottom 50% largely remain within planetary boundaries. Key drivers include food production, manufacturing, and services. Wealthier groups rely more on animal-based foods, while poorer groups depend on plant-based diets. Mitigation strategies aimed at reducing overconsumption among the wealthiest 20%, particularly in food and service sectors, could decrease environmental pressure by 25–53%, helping restore ecological balance and biodiversity.  

Targeted policies, such as progressive taxation, efficiency improvements, and equitable resource distribution, are essential to curb overconsumption and promote sustainability. However, data gaps and socioeconomic disparities pose challenges for universal implementation. Future research should broaden planetary boundary indicators, improve data tracking, and foster collaboration between governments, industries, and communities to enhance global sustainable practices.

 

Figure | The footprints of the six environmental indicators and the shares of each global expenditure decile in the total footprints in 2017. Bar and doughnut pie chart refers to the per capita footprints and the percentage share of each global decile in the total footprints, respectively. The expenditure level of each decile group increases as the colour deepens. The red circle represents the level of per capita boundaries.

Viewed Articles
Keeping the global consumption within the planetary boundaries
November 13, 2024 | Nature | Source |  Introduction: Researchers from Shandong University (China) and the University of Maryland (USA) investigate the global distribution of environmental footprints a
Read More
A hybrid sustainability performance measurement approach for fresh food cold supply chains
April 20, 2023 | Journal of Cleaner Production | Source |  Introduction: Fresh food cold supply chains (CSCs) in developing countries face major sustainability issues, including food waste, high energ
Greenhouse gas emissions and carbon sequestration in organic dehesa livestock farms. Does technical-economic management matters?
October 20, 2022 | Journal of Cleaner Production | Source |  Introduction: While organic livestock systems are often hailed as environmentally friendly, their greenhouse gas (GHG) emissions and carbon
Eating healthy or wasting less? Reducing resource footprints of food consumption
April 29, 2021 | Environmental Research Letters | Source |  Introduction: Researchers from the University of Freiburg and University of Kassel (Germany), together with the Vienna University of Economi
Optimized agricultural management reduces global cropland nitrogen losses to air and water
November 12, 2024 | Nature Food | Source |  Introduction: While nitrogen (N) inputs are essential for crop productivity, N losses from croplands contribute to major environmental issues, including cli
Cradle-to-grave emissions from food loss and waste represent half of total greenhouse gas emissions from food systems
March 13, 2023 | Nature Food | Source |  Introduction: Food loss and waste (FLW) are major contributors to global GHG emissions, yet their full impact across the food system has been underexplored. A
TOP