Search
Conventional agriculture increases global warming while decreasing system sustainability

November 4, 2024 | Nature Climate Change | Source |

 

Introduction: The research, led by scientists from South China Agricultural University (China) with a global team from Egypt, Russia, and Germany, examines the impacts of conventional agriculture on greenhouse gas (GHG) emissions and system sustainability from 1961 to 2020. Using a cradle-to-gate life cycle assessment, the study evaluates global warming potential (GWP) and sustainability index (SI) for major grain crops, linking intensive practices—including synthetic fertilizers, irrigation, and mechanization—to increased emissions and decreased sustainability.

Key findings: Since 1961, conventional agriculture has increased GWP eightfold while decreasing SI threefold, primarily due to synthetic fertilizers, irrigation, and tillage, which together contribute 90% of emissions. Rice production exhibited the highest GWP per grain unit, surpassing maize and wheat. Regional disparities were evident: South Asia recorded high GWP and declining SI due to heavy reliance on fertilizers and irrigation, while Europe maintained higher SI with moderate GWP increases, attributed to efficient resource use. Without mitigation, GWP could triple by 2100, and SI could decline fourfold due to inefficient input usage. However, adopting climate-smart practices, such as renewable energy integration and enhanced input efficiency, could reduce GWP to 2.3 PgCOâ‚‚e and quadruple SI. The study emphasizes the urgent need for region-specific sustainable practices to mitigate emissions while balancing food security. Future research should refine life cycle assessments to address spatial variability in soil and climate conditions and develop technologies tailored to regional crop systems to optimize sustainability and reduce emissions.

 

Figure | LCA of the global warming of conventional agriculture. Values between brackets are the global averages (MgCO2eMg−1 grain) of the three crops (maize, rice and wheat) in 2020. Values after ± are the standard deviations (n = 187, indicating number of the included countries. The cradle stage (bounded by dashed blue line) includes production, Gate stage (1,163 ± 1,440) packaging and transportation of seeds, fertilizers and pesticides. The gate stage (bordered by dashed orange line) includes farm-gate operations (application of fertilizers, soil emissions, tillage, irrigation and harvesting).

Viewed Articles
Conventional agriculture increases global warming while decreasing system sustainability
November 4, 2024 | Nature Climate Change | Source |  Introduction: The research, led by scientists from South China Agricultural University (China) with a global team from Egypt, Russia, and Germany,
Read More
An overview of underutilized benefits derived from Azolla as a promising biofertilizer in lowland rice production
January, 2023 | Heliyon | Source |  Introduction: Azolla, an aquatic fern with nitrogen-fixing capabilities through its symbiotic association with Aenabana azollae, has the potential to serve as an ec
Greenhouse gas emission from rice fields: a review from Indian context
April 27, 2021 | Environmental Science and Pollution Research | Source |  Introduction: This review, led by scientists from the Department of Environmental Sciences at Central University of Jharkhand
Context-specific assessments of carbon footprints of the rice value chain: from product labeling to potential mitigation impacts
June 5, 2023 | International Journal of Life Cycle Assessment | Source |  Introduction: The study, led by researchers from the International Rice Research Institute (IRRI), investigates innovative too
Optimizing the rate of straw returning to balance trade-offs between carbon emission budget and rice yield in China
June, 2024 | Sustainable Production and Consumption | Source |  Introduction:  As the world's largest producer (15.4%) and consumer (21.4%) of rice, China faces the critical challenge of balancing
Addressing dairy industry's scope 3 greenhouse gas emissions by efficiently managing farm carbon footprints
April, 2023 | Environmental Challenges | Source |  Introduction: Upstream greenhouse gas (GHG) emissions (i.e. scope 3)—accounting for 70–90% of the dairy industry’s total emissions—pose a persistent
TOP