Search
Conventional agriculture increases global warming while decreasing system sustainability

November 4, 2024 | Nature Climate Change | Source |

 

Introduction: The research, led by scientists from South China Agricultural University (China) with a global team from Egypt, Russia, and Germany, examines the impacts of conventional agriculture on greenhouse gas (GHG) emissions and system sustainability from 1961 to 2020. Using a cradle-to-gate life cycle assessment, the study evaluates global warming potential (GWP) and sustainability index (SI) for major grain crops, linking intensive practices—including synthetic fertilizers, irrigation, and mechanization—to increased emissions and decreased sustainability.

Key findings: Since 1961, conventional agriculture has increased GWP eightfold while decreasing SI threefold, primarily due to synthetic fertilizers, irrigation, and tillage, which together contribute 90% of emissions. Rice production exhibited the highest GWP per grain unit, surpassing maize and wheat. Regional disparities were evident: South Asia recorded high GWP and declining SI due to heavy reliance on fertilizers and irrigation, while Europe maintained higher SI with moderate GWP increases, attributed to efficient resource use. Without mitigation, GWP could triple by 2100, and SI could decline fourfold due to inefficient input usage. However, adopting climate-smart practices, such as renewable energy integration and enhanced input efficiency, could reduce GWP to 2.3 PgCOâ‚‚e and quadruple SI. The study emphasizes the urgent need for region-specific sustainable practices to mitigate emissions while balancing food security. Future research should refine life cycle assessments to address spatial variability in soil and climate conditions and develop technologies tailored to regional crop systems to optimize sustainability and reduce emissions.

 

Figure | LCA of the global warming of conventional agriculture. Values between brackets are the global averages (MgCO2eMg−1 grain) of the three crops (maize, rice and wheat) in 2020. Values after ± are the standard deviations (n = 187, indicating number of the included countries. The cradle stage (bounded by dashed blue line) includes production, Gate stage (1,163 ± 1,440) packaging and transportation of seeds, fertilizers and pesticides. The gate stage (bordered by dashed orange line) includes farm-gate operations (application of fertilizers, soil emissions, tillage, irrigation and harvesting).

Viewed Articles
Conventional agriculture increases global warming while decreasing system sustainability
November 4, 2024 | Nature Climate Change | Source |  Introduction: The research, led by scientists from South China Agricultural University (China) with a global team from Egypt, Russia, and Germany,
Read More
Assessing the lifecycle greenhouse gas (GHG) emissions of perishable food products delivered by the cold chain in China
June 20, 2021 | Journal of Cleaner Production | Source | Introduction: Researchers from the University of Michigan (USA) analyzed the lifecycle GHG emissions of perishable foods—vegetables, fruits, me
Addressing dairy industry's scope 3 greenhouse gas emissions by efficiently managing farm carbon footprints
April, 2023 | Environmental Challenges | Source |  Introduction: Upstream greenhouse gas (GHG) emissions (i.e. scope 3)—accounting for 70–90% of the dairy industry’s total emissions—pose a persistent
Opportunities for mitigating net system greenhouse gas emissions in Southeast Asian rice production: A systematic review
February 28, 2024 | Agriculture, Ecosystems & Environment | Source |  Introduction: Despite existing mitigation efforts, integrated approaches addressing system-wide emissions—including soil organic c
Cradle-to-grave emissions from food loss and waste represent half of total greenhouse gas emissions from food systems
March 13, 2023 | Nature Food | Source |  Introduction: Food loss and waste (FLW) are major contributors to global GHG emissions, yet their full impact across the food system has been underexplored. A
Toward Low-Carbon Rice Production in China: Historical Changes, Driving Factors, and Mitigation Potential
March 19, 2024 | Environmental Science & Technology | Source |  Introduction: This study, conducted by researchers from Hunan University and the Chinese Academy of Sciences, evaluates the historical c
TOP