Search
Greenhouse gas mitigation requires caution

June 6, 2024 | Science | Source |

 

Introduction: Methane (CHâ‚„) and nitrous oxide (Nâ‚‚O), greenhouse gases (GHGs) far more potent than COâ‚‚, are emitted via microbial activity in diverse ecosystems. Biologists from the University of Alberta (Canada) and the University of Washington (USA) investigate the trade-offs and unintended consequences of CHâ‚„-Nâ‚‚O mitigation strategies, emphasizing their complex interplay and the need for integrated approaches. 

Key findings: Methanotrophs interact with nitrogen cycles, sometimes increasing Nâ‚‚O emissions in low-oxygen environments, while nitrification inhibitors can suppress methanotrophic activity, inadvertently raising CHâ‚„ levels. Promising biology-based CHâ‚„ mitigation methods, such as biofilters and compost biocovers, can reduce CHâ‚„ emissions but may increase Nâ‚‚O levels, underscoring the need for careful monitoring of nitrogen interactions. Critical zones, including rice paddies and landfills, illustrate the complexity of CHâ‚„-Nâ‚‚O trade-offs. Closed bioreactor systems show promise for controlling emissions and producing sustainable bioproducts, though scalability and economic feasibility remain significant challenges. To maximize climate benefits, effective mitigation strategies must integrate comprehensive monitoring, nutrient management, and innovative amendments. Tailored interventions across diverse environmental contexts are crucial for achieving sustainable outcomes globally.

 

Figure | Microbial processes controlling methane and nitrous oxide production. Nitrification inhibitors (NI) can block both nitrification and aerobic methanotrophy, preventing methane (CH4) consumption and nitrous oxide (N2O) production. Methanobactin (Mb) blocks N2O consumption, potentially increasing N2O emissions.

Viewed Articles
Greenhouse gas mitigation requires caution
June 6, 2024 | Science | Source | Introduction: Methane (CH₄) and nitrous oxide (N₂O), greenhouse gases (GHGs) far more potent than CO₂, are emitted via microbial activity in diverse ecosystems. Biolo
Priority areas to protect mangroves and maximise ecosystem services
September 21, 2023 | Nature Communications | Source | Introduction: Human activities are threatening global biodiversity and the ecosystem services provided by mangroves. Current conservation efforts
The Ministry of the Environment plans to plant mangroves to reduce carbon emissions, but scholars worry about counterproductive effects of harming biodiversity
July 18, 2024 | PTS, Taiwan | (In Chinese)Taiwan’s Ministry of Environment is currently reviewing the methodology for expanding mangrove forests as a carbon sequestration strategy. While mangroves are
Deep-sea impacts of climate interventions
March 9, 2023 | Science | Source | Introduction: As climate interventions, such as geoengineering and carbon sequestration, are increasingly considered to combat global warming, their potential effect
Read More
Conventional agriculture increases global warming while decreasing system sustainability
November 4, 2024 | Nature Climate Change | Source |  Introduction: The research, led by scientists from South China Agricultural University (China) with a global team from Egypt, Russia, and Germany,
Context-specific assessments of carbon footprints of the rice value chain: from product labeling to potential mitigation impacts
June 5, 2023 | International Journal of Life Cycle Assessment | Source |  Introduction: The study, led by researchers from the International Rice Research Institute (IRRI), investigates innovative too
A conceptual framework for understanding the environmental impacts of ultra-processed foods and implications for sustainable food systems
September 25, 2022 | Journal of Cleaner Production | Source |  Introduction: Ultra-processed foods (UPFs) exacerbate the global food system’s failure by driving environmental harm, undermining nutriti
Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health
January 3, 2024 | Nature Communications | Source | Introduction: Conventional intensive farming boosts yields but also drives GHG emissions, soil degradation, and climate vulnerability, especially in
The potential of biochar incorporation into agricultural soils to promote sustainable agriculture: Insights from soil health, crop productivity, greenhouse gas emission mitigation and feasibility perspectives—A critical review
November 11, 2024 | Reviews in Environmental Science and Bio/Technology | Source |  Introduction: Addressing the growing threat of soil degradation, researchers from the University of Prince Edward Is
TOP