Search
Greenhouse gas mitigation requires caution

June 6, 2024 | Science | Source |

 

Introduction: Methane (CHâ‚„) and nitrous oxide (Nâ‚‚O), greenhouse gases (GHGs) far more potent than COâ‚‚, are emitted via microbial activity in diverse ecosystems. Biologists from the University of Alberta (Canada) and the University of Washington (USA) investigate the trade-offs and unintended consequences of CHâ‚„-Nâ‚‚O mitigation strategies, emphasizing their complex interplay and the need for integrated approaches. 

Key findings: Methanotrophs interact with nitrogen cycles, sometimes increasing Nâ‚‚O emissions in low-oxygen environments, while nitrification inhibitors can suppress methanotrophic activity, inadvertently raising CHâ‚„ levels. Promising biology-based CHâ‚„ mitigation methods, such as biofilters and compost biocovers, can reduce CHâ‚„ emissions but may increase Nâ‚‚O levels, underscoring the need for careful monitoring of nitrogen interactions. Critical zones, including rice paddies and landfills, illustrate the complexity of CHâ‚„-Nâ‚‚O trade-offs. Closed bioreactor systems show promise for controlling emissions and producing sustainable bioproducts, though scalability and economic feasibility remain significant challenges. To maximize climate benefits, effective mitigation strategies must integrate comprehensive monitoring, nutrient management, and innovative amendments. Tailored interventions across diverse environmental contexts are crucial for achieving sustainable outcomes globally.

 

Figure | Microbial processes controlling methane and nitrous oxide production. Nitrification inhibitors (NI) can block both nitrification and aerobic methanotrophy, preventing methane (CH4) consumption and nitrous oxide (N2O) production. Methanobactin (Mb) blocks N2O consumption, potentially increasing N2O emissions.

Viewed Articles
Greenhouse gas mitigation requires caution
June 6, 2024 | Science | Source | Introduction: Methane (CH₄) and nitrous oxide (N₂O), greenhouse gases (GHGs) far more potent than CO₂, are emitted via microbial activity in diverse ecosystems. Biolo
Read More
Assessing the lifecycle greenhouse gas (GHG) emissions of perishable food products delivered by the cold chain in China
June 20, 2021 | Journal of Cleaner Production | Source | Introduction: Researchers from the University of Michigan (USA) analyzed the lifecycle GHG emissions of perishable foods—vegetables, fruits, me
Enhancing agroecosystem nitrogen management: microbial insights for improved nitrification inhibition
June, 2024 | Trends in Microbiology | Source |  Introduction: Excessive nitrification in agroecosystems causes nitrate leaching and N₂O emissions. Although nitrification inhibitors (NIs) reduce nitrog
Greenhouse gas emissions and carbon sequestration in organic dehesa livestock farms. Does technical-economic management matters?
October 20, 2022 | Journal of Cleaner Production | Source |  Introduction: While organic livestock systems are often hailed as environmentally friendly, their greenhouse gas (GHG) emissions and carbon
Mitigation of greenhouse gas emissions in pasture-based dairy-beef production systems
October, 2023 | Agricultural Systems | Source |  Introduction: Ireland’s beef sector, responsible for 37% of national greenhouse gas (GHG) emissions, presents key opportunities for climate mitigation
An overview of underutilized benefits derived from Azolla as a promising biofertilizer in lowland rice production
January, 2023 | Heliyon | Source |  Introduction: Azolla, an aquatic fern with nitrogen-fixing capabilities through its symbiotic association with Aenabana azollae, has the potential to serve as an ec
TOP