Search
An overview of underutilized benefits derived from Azolla as a promising biofertilizer in lowland rice production

January, 2023 | Heliyon | Source |

 

Introduction: Azolla, an aquatic fern with nitrogen-fixing capabilities through its symbiotic association with Aenabana azollae, has the potential to serve as an eco-friendly and cost-effective alternative to chemical fertilizers. Despite its benefits on soil fertility, nitrogen use efficiency, reducing weed competition, and mitigating emissions—its adoption remains limited among rice farmers. This study, conducted by researchers from the Ministry of Education and Vocational Training, and Sokoine University of Agriculture in Tanzania, systematically reviews the benefits, constraints, and application strategies of Azolla in lowland rice production using the PRISMA method.

 

Key findings: The study highlights several key aspects of Azolla's role as a biofertilizer:

  • Soil Fertility and Nutrient Cycling: Azolla significantly enhances soil organic matter, increases microbial biomass, and improves soil nutrient availability. Its incorporation into rice fields can replace up to 60 kg N ha⁻¹ of synthetic fertilizer.
  • Nitrogen Fixation and Release: Anabaena azollae within Azolla fixes atmospheric nitrogen, providing an essential nutrient source for rice. When used as green manure, 56–75% of its nitrogen content becomes available to the rice crop within 3–6 weeks after application.
  • Weed Suppression: A dense Azolla mat reduces light penetration, suppressing weed emergence and decreasing reliance on herbicides.
  • Reduction of Ammonia Volatilization: Azolla lowers floodwater pH and temperature, thereby reducing nitrogen loss due to ammonia volatilization.
  • Enhanced Rice Yield: Studies indicate that incorporating Azolla into rice fields can increase grain yield by 27–36%, comparable to full nitrogen fertilization.
  • Constraints to Adoption: Despite its benefits, Azolla cultivation faces several challenges, including high labor requirements for incorporation, the need for phosphorus supplementation, and the difficulty of maintaining consistent biomass production across different agroecological zones.

To enhance the adoption of Azolla as a biofertilizer, strategic initiatives should focus on farmer education, research into species-specific performance, development of cost-effective application methods, and policy support for integrated nutrient management. Expanding its use in sustainable rice production could significantly contribute to improving soil health, reducing dependency on synthetic fertilizers, and promoting climate-smart agricultural practices.

 

Figure | Illustration showing some benefits of Azolla biofertilizer when either left flooded (a) or incorporated in the soil (b).

 

Viewed Articles
An overview of underutilized benefits derived from Azolla as a promising biofertilizer in lowland rice production
January, 2023 | Heliyon | Source |  Introduction: Azolla, an aquatic fern with nitrogen-fixing capabilities through its symbiotic association with Aenabana azollae, has the potential to serve as an ec
Read More
Mitigation of greenhouse gas emissions in pasture-based dairy-beef production systems
October, 2023 | Agricultural Systems | Source |  Introduction: Ireland’s beef sector, responsible for 37% of national greenhouse gas (GHG) emissions, presents key opportunities for climate mitigation
Optimizing agricultural management in China for soil greenhouse gas emissions and yield balance: A regional heterogeneity perspective
May 1, 2024 | Journal of Cleaner Production | Source |  Introduction: Region-specific strategies are critical for China to balance crop production and environmental sustainability. This study, led by
Future carbon emissions from global mangrove forest loss
February 28, 2021 | Global Change Biology | Source |  Introduction: Mangroves significantly contribute to global climate mitigation by storing substantial carbon, yet their continuous loss poses major
Addressing dairy industry's scope 3 greenhouse gas emissions by efficiently managing farm carbon footprints
April, 2023 | Environmental Challenges | Source |  Introduction: Upstream greenhouse gas (GHG) emissions (i.e. scope 3)—accounting for 70–90% of the dairy industry’s total emissions—pose a persistent
Conventional agriculture increases global warming while decreasing system sustainability
November 4, 2024 | Nature Climate Change | Source |  Introduction: The research, led by scientists from South China Agricultural University (China) with a global team from Egypt, Russia, and Germany,
TOP