Search
An overview of underutilized benefits derived from Azolla as a promising biofertilizer in lowland rice production

January, 2023 | Heliyon | Source |

 

Introduction: Azolla, an aquatic fern with nitrogen-fixing capabilities through its symbiotic association with Aenabana azollae, has the potential to serve as an eco-friendly and cost-effective alternative to chemical fertilizers. Despite its benefits on soil fertility, nitrogen use efficiency, reducing weed competition, and mitigating emissions—its adoption remains limited among rice farmers. This study, conducted by researchers from the Ministry of Education and Vocational Training, and Sokoine University of Agriculture in Tanzania, systematically reviews the benefits, constraints, and application strategies of Azolla in lowland rice production using the PRISMA method.

 

Key findings: The study highlights several key aspects of Azolla's role as a biofertilizer:

  • Soil Fertility and Nutrient Cycling: Azolla significantly enhances soil organic matter, increases microbial biomass, and improves soil nutrient availability. Its incorporation into rice fields can replace up to 60 kg N ha⁻¹ of synthetic fertilizer.
  • Nitrogen Fixation and Release: Anabaena azollae within Azolla fixes atmospheric nitrogen, providing an essential nutrient source for rice. When used as green manure, 56–75% of its nitrogen content becomes available to the rice crop within 3–6 weeks after application.
  • Weed Suppression: A dense Azolla mat reduces light penetration, suppressing weed emergence and decreasing reliance on herbicides.
  • Reduction of Ammonia Volatilization: Azolla lowers floodwater pH and temperature, thereby reducing nitrogen loss due to ammonia volatilization.
  • Enhanced Rice Yield: Studies indicate that incorporating Azolla into rice fields can increase grain yield by 27–36%, comparable to full nitrogen fertilization.
  • Constraints to Adoption: Despite its benefits, Azolla cultivation faces several challenges, including high labor requirements for incorporation, the need for phosphorus supplementation, and the difficulty of maintaining consistent biomass production across different agroecological zones.

To enhance the adoption of Azolla as a biofertilizer, strategic initiatives should focus on farmer education, research into species-specific performance, development of cost-effective application methods, and policy support for integrated nutrient management. Expanding its use in sustainable rice production could significantly contribute to improving soil health, reducing dependency on synthetic fertilizers, and promoting climate-smart agricultural practices.

 

Figure | Illustration showing some benefits of Azolla biofertilizer when either left flooded (a) or incorporated in the soil (b).

 

Viewed Articles
An overview of underutilized benefits derived from Azolla as a promising biofertilizer in lowland rice production
January, 2023 | Heliyon | Source |  Introduction: Azolla, an aquatic fern with nitrogen-fixing capabilities through its symbiotic association with Aenabana azollae, has the potential to serve as an ec
Read More
Transitioning to low-carbon agriculture: the non-linear role of digital inclusive finance in China’s agricultural carbon emissions
June 24, 2024 | Humanities and Social Sciences Communications |  Introduction: Digital inclusive finance is widely promoted as an enabler of green transitions, yet its environmental impacts in agricul
Eating healthy or wasting less? Reducing resource footprints of food consumption
April 29, 2021 | Environmental Research Letters | Source |  Introduction: Researchers from the University of Freiburg and University of Kassel (Germany), together with the Vienna University of Economi
Mitigation of greenhouse gas emissions in pasture-based dairy-beef production systems
October, 2023 | Agricultural Systems | Source |  Introduction: Ireland’s beef sector, responsible for 37% of national greenhouse gas (GHG) emissions, presents key opportunities for climate mitigation
Climate change and livestock production: a literature review
January 15, 2022 | Atmosphere | Source | Introduction: Livestock both drives and suffers from climate change, contributing 14.5% of global GHG emissions while facing growing climate-induced stress. Re
Livestock greenhouse gas emission and mitigation potential in China
December 15, 2023 | Journal of Environmental Management | Source |  Introduction: Livestock production is a significant source of greenhouse gas emissions (GHGE) in China, challenging the country’s 20
TOP