Search
Greenhouse gas emission from rice fields: a review from Indian context

April 27, 2021 | Environmental Science and Pollution Research | Source |

 

Introduction: This review, led by scientists from the Department of Environmental Sciences at Central University of Jharkhand in India, examines the methane (CH4) and nitrous oxide (N2O) emissions from rice fields in India. It analyzes data from various locations to assess the impacts of field and crop management practices, highlighting the need for precise quantification to inform effective mitigation strategies.

 

Key findings: Research indicates that the highest CHâ‚„ emissions occur under continuously flooded conditions, while intermittently flooded rice fields produce less CHâ‚„ but more Nâ‚‚O. The primary strategies for reducing emissions in Indian rice fields covered include:

  • Irrigation Management – Alternate wetting and drying (AWD) can cut CHâ‚„ emissions by 22-75% compared to continuous flooding.
  • Tillage Practices – Zero and reduced tillage methods help lower CHâ‚„ emissions by reducing soil organic matter decomposition.
  • Fertilizer Management – Applying slow-release fertilizers, nitrification inhibitors (e.g., dicyandiamide), and organic amendments like biochar reduces both CHâ‚„ and Nâ‚‚O emissions.
  • Rice Cultivar Selection – Certain cultivars with lower aerenchyma transport CHâ‚„ and Nâ‚‚O less efficiently, making them more sustainable options.
  • Manure Management – Incorporating green manure and compost instead of synthetic fertilizers can significantly reduce GHG emissions.

The review highlights the urgent need for integrated mitigation strategies tailored to India's diverse rice ecosystems. Adoption of improved water, soil, and fertilizer management techniques can help balance high rice productivity with environmental sustainability while aligning with India's climate commitments.

 

Figure | Emanation of greenhouse gas from a. different sector from Indian economy and b. sub sectors of agriculture in 2010

Viewed Articles
Greenhouse gas emission from rice fields: a review from Indian context
April 27, 2021 | Environmental Science and Pollution Research | Source |  Introduction: This review, led by scientists from the Department of Environmental Sciences at Central University of Jharkhand
Read More
Future carbon emissions from global mangrove forest loss
February 28, 2021 | Global Change Biology | Source |  Introduction: Mangroves significantly contribute to global climate mitigation by storing substantial carbon, yet their continuous loss poses major
Climate change and livestock production: a literature review
January 15, 2022 | Atmosphere | Source | Introduction: Livestock both drives and suffers from climate change, contributing 14.5% of global GHG emissions while facing growing climate-induced stress. Re
Toward Low-Carbon Rice Production in China: Historical Changes, Driving Factors, and Mitigation Potential
March 19, 2024 | Environmental Science & Technology | Source |  Introduction: This study, conducted by researchers from Hunan University and the Chinese Academy of Sciences, evaluates the historical c
Enhancing agroecosystem nitrogen management: microbial insights for improved nitrification inhibition
June, 2024 | Trends in Microbiology | Source |  Introduction: Excessive nitrification in agroecosystems causes nitrate leaching and N₂O emissions. Although nitrification inhibitors (NIs) reduce nitrog
An overview of underutilized benefits derived from Azolla as a promising biofertilizer in lowland rice production
January, 2023 | Heliyon | Source |  Introduction: Azolla, an aquatic fern with nitrogen-fixing capabilities through its symbiotic association with Aenabana azollae, has the potential to serve as an ec
TOP