Search
Opportunities for mitigating net system greenhouse gas emissions in Southeast Asian rice production: A systematic review

February 28, 2024 | Agriculture, Ecosystems & Environment | Source |

 

Introduction: Despite existing mitigation efforts, integrated approaches addressing system-wide emissionsincluding soil organic carbon (SOC), energy use, and residue managementremain underexplored. This systematic review, conducted by researchers from the University of California Davis (USA), IRRI (Philippines), and INIA Uruguay, synthesizes scientific evidence across four components using a net system emissions framework. The study assesses cross-component effects and highlights effective mitigation opportunities critical for sustainable rice practices in SEA amidst growing global climate commitments.

 

Key findings: The study identifies key opportunities for mitigating net GHG emissions in SEA rice production across four components:

  • Field GHG Emissions: Effective mitigation strategies include alternate wetting and drying (AWD) irrigation, mid-season drainage, straw removal or burning, and biochar application. These methods significantly reduce CHâ‚„ emissions but may increase nitrous oxide (Nâ‚‚O) emissions or lower SOC, requiring balanced management.
  • Energy Inputs: Synthetic nitrogen fertilizers and fossil fuels are major emission sources. Mitigation strategies involve optimized fertilization through site-specific nutrient management, alternative nutrient sources like biochar, and reduced water-intensive irrigation methods such as AWD.
  • Residue Utilization: Removing rice straw from fields to prevent open burning significantly reduces GHG emissions. Opportunities include repurposing residues for energy production, such as electricity or bioethanol, which offsets fossil fuel emissions and enhances energy efficiency.
  • Soil Organic Carbon (SOC): Practices like biochar application, residue incorporation, and compost enhance SOC stocks, offsetting emissions. Biochar shows significant soil carbon gains, but high application rates may present practical challenges. Long-term research is needed to understand the combined effects of practices like drainage and straw removal.

The review emphasizes the importance of integrated approaches that address cross-component synergies and trade-offs. While field GHG emissions and SOC changes offer the largest mitigation potential, strategies like water and carbon management often involve trade-offs, such as SOC reductions from drainage. Long-term research is crucial to optimize integrated practices, balancing emissions reductions and SOC preservation effectively.

 

Figure | Schematic of net system emissions conceptual framework guiding the literature search and review (each colored box represents a pool of C flux, with red representing emissions and green representing mitigation).

Viewed Articles
Opportunities for mitigating net system greenhouse gas emissions in Southeast Asian rice production: A systematic review
February 28, 2024 | Agriculture, Ecosystems & Environment | Source |  Introduction: Despite existing mitigation efforts, integrated approaches addressing system-wide emissions—including soil organic c
Read More
Future carbon emissions from global mangrove forest loss
February 28, 2021 | Global Change Biology | Source |  Introduction: Mangroves significantly contribute to global climate mitigation by storing substantial carbon, yet their continuous loss poses major
Greenhouse gas mitigation requires caution
June 6, 2024 | Science | Source | Introduction: Methane (CH₄) and nitrous oxide (N₂O), greenhouse gases (GHGs) far more potent than CO₂, are emitted via microbial activity in diverse ecosystems. Biolo
The potential of biochar incorporation into agricultural soils to promote sustainable agriculture: Insights from soil health, crop productivity, greenhouse gas emission mitigation and feasibility perspectives—A critical review
November 11, 2024 | Reviews in Environmental Science and Bio/Technology | Source |  Introduction: Addressing the growing threat of soil degradation, researchers from the University of Prince Edward Is
Optimizing agricultural management in China for soil greenhouse gas emissions and yield balance: A regional heterogeneity perspective
May 1, 2024 | Journal of Cleaner Production | Source |  Introduction: Region-specific strategies are critical for China to balance crop production and environmental sustainability. This study, led by
Climate change and livestock production: a literature review
January 15, 2022 | Atmosphere | Source | Introduction: Livestock both drives and suffers from climate change, contributing 14.5% of global GHG emissions while facing growing climate-induced stress. Re
TOP