Search
Microbial necromass under global change and implications for soil organic matter
March 19, 2023 | Global Change Biology | 
Microbes play a crucial role in soil health and the cycling of carbon and nutrients. One important aspect of these microbes is their "necromass," the remains of dead microorganisms that contribute to soil organic matter. However, the impacts of global changes on microbial necromass are not well understood. Researchers from Sichuan Agricultural University and Vrije Universiteit Amsterdam conducted a study to investigate this relationship. 
Their findings revealed that factors like nitrogen, phosphorus, and potassium inputs from human activities, climate warming, elevated carbon dioxide levels, and periodic drought significantly affect soil microorganisms and the formation of microbial necromass. They discovered that adding nitrogen along with phosphorus and potassium increased the content of fungal and bacterial necromass, leading to increased soil organic matter. Interestingly, warming temperatures favored bacterial growth over fungi, as bacteria thrive in higher temperatures. However, other global change factors had minimal effects on microbial necromass.
This study highlights the critical role of microbial necromass in soil health and its response to global changes. Further research is needed to understand the specific responses of bacteria and fungi to nitrogen addition and warming, as well as the contribution of microbial necromass to soil organic matter under different fertilization practices. By unraveling these relationships, we can better protect our soils and mitigate the effects of climate change (Read more).
Graphical summary of the main processes of global change effects on the bacterial, fungal, and total microbial (bacteria plus fungi) necromass. Red arrows indicate positive effects (increase), blue arrows represent the negative effects (decrease), and grey horizontal arrows show absence of changes (no effects). CUE, carbon use efficiency. Created with BioRender (https://biore nder.com/).
 

 

Viewed Articles
Microbial necromass under global change and implications for soil organic matter
March 19, 2023 | Global Change Biology | Microbes play a crucial role in soil health and the cycling of carbon and nutrients. One important aspect of these microbes is their "necromass," the remains o
Read More
Enhancing agroecosystem nitrogen management: microbial insights for improved nitrification inhibition
June, 2024 | Trends in Microbiology | Source |  Introduction: Excessive nitrification in agroecosystems causes nitrate leaching and N₂O emissions. Although nitrification inhibitors (NIs) reduce nitrog
Mitigation of greenhouse gas emissions in pasture-based dairy-beef production systems
October, 2023 | Agricultural Systems | Source |  Introduction: Ireland’s beef sector, responsible for 37% of national greenhouse gas (GHG) emissions, presents key opportunities for climate mitigation
Opportunities for mitigating net system greenhouse gas emissions in Southeast Asian rice production: A systematic review
February 28, 2024 | Agriculture, Ecosystems & Environment | Source |  Introduction: Despite existing mitigation efforts, integrated approaches addressing system-wide emissions—including soil organic c
Pre- and post-production processes increasingly dominate greenhouse gas emissions from agri-food systems
April 14, 2022 | Earth System Science Data | Source | Introduction: Traditional assessments have underestimated global GHG emissions from agrifood systems by focusing mainly on farm-level production a
Addressing dairy industry's scope 3 greenhouse gas emissions by efficiently managing farm carbon footprints
April, 2023 | Environmental Challenges | Source |  Introduction: Upstream greenhouse gas (GHG) emissions (i.e. scope 3)—accounting for 70–90% of the dairy industry’s total emissions—pose a persistent
TOP