Search
2023-07-19
Abaxial leaf surface-mounted multimodal wearable sensor for continuous plant physiology monitoring

April 14, 2023 | SCIENCE ADVANCES

 

Researchers at North Carolina State University conducted a study on wearable plant sensors, which have the potential to revolutionize smart agriculture. The study focused on the development of a wearable sensor that can be attached to the lower surface of plant leaves to continuously monitor plant physiology. This sensor is capable of tracking both biochemical and biophysical signals of the plant and its microenvironment. It integrates sensors for detecting volatile organic compounds (VOCs), temperature, and humidity into a single platform.

The researchers strategically chose the abaxial leaf attachment position based on stomata density to enhance the sensor's signal strength. This versatile platform can be used for various stress monitoring applications, such as tracking plant water loss and detecting plant pathogens at an early stage.

Furthermore, the study involved the development of a machine learning model that can analyze the data collected by the multichannel sensor. The model demonstrated the ability to detect the presence of the tomato spotted wilt virus as early as 4 days after inoculation. It also evaluated different combinations of sensors for early disease detection and concluded that at least three sensors, including the VOC sensors, are required.

Overall, the study showcases the potential of wearable plant sensors in advancing agricultural practices by enabling real-time monitoring and early detection of plant stresses and diseases.

*
A multimodal wearable plant sensor. (A) Schematic illustration of the sensor attached to a plant leaf. Our multimodal sensor is attached to the abaxial leaf surface to simultaneously monitor various physiology data from the leaf. Blue and orange arrows represent emissions of water and VOCs through stomata, respectively. Different colors of the leaf represent the variation of leaf surface temperature. (B) Overview of the wearable sensor design, which consists of four VOC sensors, one leaf surface relative humidity sensor, one leaf temperature sensor, and one environmental humidity sensor. All seven individual sensors were integrated with AgNW interconnects on a PDMS substrate. (C) Photograph of the actual sensor. VOC sensors with different sensing materials are labeled. (D) Side view of the wearable sensor patch.(E) Photographs of an actual sensor patch attached to the lower epidermis of the tomato leaf. The environmental humidity sensor (red arrow) is the only sensor mounted outside the leaf surface area in the air near the plant.

 

Viewed Articles
Abaxial leaf surface-mounted multimodal wearable sensor for continuous plant physiology monitoring
April 14, 2023 | SCIENCE ADVANCES Researchers at North Carolina State University conducted a study on wearable plant sensors, which have the potential to revolutionize smart agriculture. The study foc
Jul 19, 2023
Towards food supply chain resilience to environmental shocks
December 21, 2020 | Nature Food | Source | Introduction:  Environmental changes, from climate shifts to extreme events, threaten food systems globally, affecting production, distribution, and consumpt
Mar 29, 2024
Looking up and going down: Does sustainable adaptation to climate change ensure dietary diversity and food security among rural communities or vice versa?
March 20, 2023 | Frontiers in Sustainable Food Systems | Researchers from Pakistan, Saudi Arabia, and the United States conducted a study that highlights the importance of sustainable food systems in
Carbon mitigation in agriculture: Pioneering technologies for a sustainable food system
May 1, 2024 | Trends in Food Science & Technology | Source | Introduction: Agriculture significantly contributes to greenhouse gas emissions, affecting climate change and global food security. Researc
How Water Shortages Impact Food Security
July 25, 2023 | Earth.Org | Source  Water shortages significantly impact food security, which encompasses sufficient, safe, and nutritious food access for all. Several factors link water scarcity and
Aug 27, 2023
The future of plant-based diets: Aligning healthy marketplace choices with equitable, resilient, and sustainable food systems
May 1, 2024 | Annual Review of Public Health | Source | Introduction: Sustainable diets have evolved alongside the UN Sustainable Development Goals, incorporating goals in terms of agricultural produc
IoT-based Bacillus number prediction in smart turmeric farms using small data sets
IEEE Internet of Things Journal | Mar 15, 2023A recent study conducted by National Yang Ming Chiao Tung University in Taiwan focused on the Bacillus bacteria, which is widely used in the agricultural
Jun 30, 2023
Statistical inference method for Korean low-carbon certificate criteria of agricultural products to reflect uncertain conditions
April 20, 2023 | Journal of Cleaner Production | Source | Introduction: South Korea aims to reduce greenhouse gas (GHG) emissions by 7.9% by 2030 in agriculture, forestry, and livestock industries, an
Loss of Natural Capital due to Expansion of Cropland in China
September 25, 2023 | Nature Ecology & Evolution |  Introduction: Globally, the increasing demand for food has led to widespread loss of biodiversity and ecosystem services. The research team from the
Read More
Mitigation of greenhouse gas emissions in pasture-based dairy-beef production systems
October, 2023 | Agricultural Systems | Source |  Introduction: Ireland’s beef sector, responsible for 37% of national greenhouse gas (GHG) emissions, presents key opportunities for climate mitigation
The role of local seasonal foods in enhancing sustainable food consumption: A systematic literature review
September 17, 2021 | Foods | Source |  Introduction: Researchers from the University of Porto and Universidade Aberta (Portugal), in collaboration with EMBRAPA (Brazil), conducted a Preferred Reportin
2025.08.29
Carbon sequestration potential of agroforestry systems in Indian agricultural landscape: A Meta-Analysis
August, 2023 | Ecosystem Services | Source |  Introduction: Agricultural intensification in India threatens ecosystem sustainability, with agroforestry identified as a key strategy to mitigate these i
Blue carbon as a natural climate solution
November 1, 2021 | Nature Reviews Earth & Environment | Source | Introduction: An international research team from Australia, USA, Singapore, UK and Saudi Arabia, led by Deakin University (Australia)
Future carbon emissions from global mangrove forest loss
February 28, 2021 | Global Change Biology | Source |  Introduction: Mangroves significantly contribute to global climate mitigation by storing substantial carbon, yet their continuous loss poses major
TOP