Search
The q-rung fuzzy LOPCOW-VIKOR model to assess the role of unmanned aerial vehicles for precision agriculture realization in the Agri-Food 4.0 era

April 2023 | ARTIFICIAL INTELLIGENCE REVIEW

Afyon Kocatepe University in Turkey conducted a study focusing on smart agriculture and the role of unmanned aerial vehicles (UAVs) in this field. UAVs have become essential in modern agriculture due to their ability to assist in various agricultural activities. This study aimed to propose an integrated decision-making framework for determining the most suitable agricultural UAV.

Previous studies on UAV evaluation lacked effective modeling of uncertainty, systematic determination of expert weights, consideration of expert and criteria types during weight calculation, and personalized ranking of UAVs. To address these gaps, the researchers identified nine critical selection criteria based on literature and expert opinions, and considered five existing UAVs for evaluation.

The study developed a new integrated framework using q-rung orthopair fuzzy numbers for UAV selection. The experts' weights were estimated methodically using the regret measure, and a weighted logarithmic percentage change-driven objective weighting technique was formulated for criteria weight calculation. An algorithm combining the VIKOR approach with the Copeland strategy was presented for personalized ranking of UAVs.

The findings highlighted that the most important criteria for agricultural UAV selection were the "camera," "power system," and "radar system." The DJ AGRAS T30 UAV was identified as the most promising option. The developed framework can serve as an effective decision support system for farmers, managers, policymakers, and other stakeholders in the agriculture sector as the use of UAVs in agriculture becomes increasingly inevitable.


Proposed agricultural UAV selection model with the qRONs

Viewed Articles
The q-rung fuzzy LOPCOW-VIKOR model to assess the role of unmanned aerial vehicles for precision agriculture realization in the Agri-Food 4.0 era
April 2023 | ARTIFICIAL INTELLIGENCE REVIEWAfyon Kocatepe University in Turkey conducted a study focusing on smart agriculture and the role of unmanned aerial vehicles (UAVs) in this field. UAVs have
Read More
Enviromic assembly increases accuracy and reduces costs of the genomic prediction for yield plasticity in maize
March, 2024 | Frontiers in Plant Science |  Introduction: Developing climate-smart agriculture requires cost-effective methods to characterize crop growing conditions. A research team from the America
Internet of Plants: Revolutionizing Agriculture with Sensor Networks
August 03, 2023 | Nature Reviews Methods Primers | In the study conducted by researchers from Delft University of Technology and Wageningen University & Research, the focus is on introducing the conce
Assessing the Impact of Crop Residue Cover on Agriculture and Soil Quality Using Remote Sensing
September 12, 2023 | Scientific Reports | Introduction: Crop residue cover (CRC) is a critical but understudied factor in agriculture's impact on both productivity and soil quality. Researchers fr
An integrated approach of remote sensing and geospatial analysis for modeling and predicting the impacts of climate change on food security
January 19, 2023 | Scientific Reports |  Introduction: Climate change threatens agriculture, infrastructure, and local communities. Monitoring and predicting climate impacts on food security is essent
Going deep: Roots, carbon, and analyzing subsoil carbon dynamics
January 01, 2024 | Molecular Plant | Source | Comment: Agricultural practices contribute significantly to atmospheric greenhouse gas emissions, with tillage accelerating soil disruption and carbon rel
TOP