Search
CH4 and N2O emissions from smallholder agricultural systems on tropical peatlands in Southeast Asia

April 26 2023 GLOBAL CHANGE BIOLOGY 

This study, conducted by researchers from the University of Nottingham in collaboration with Indonesia and Malaysia, aimed to understand greenhouse gas (GHG) emissions from smallholder agricultural systems on tropical peatlands in Southeast Asia. The researchers measured methane (CH4) and nitrous oxide (N2O) fluxes in different land-use types including cropland, oil palm plantations, tree plantations, and forests.

The study found that annual CH4 emissions varied across the land-use classes, with cropland emitting the most and forests emitting the least. The depth of the water table was a significant factor influencing CH4 emissions, with higher emissions observed when the water table was deeper. In contrast, N2O emissions were strongly correlated with the concentration of dissolved nitrogen in soil water. Higher nitrogen concentrations led to increased N2O emissions.

The findings of this study provide important data that can help develop more accurate emission factors for quantifying national GHG inventories. They also highlight the significance of soil nutrient status in influencing emissions, suggesting that reducing nitrogen fertilizer inputs can contribute to mitigating emissions from agricultural peat landscapes. Ultimately, the study emphasizes the need to protect peat swamp forests from conversion to agriculture as a crucial policy intervention for reducing emissions.

Seasonal variation of water table depth in the four land-use classes, grey—forest, blue—tree plantations, green—oil palm and orange and pink—cropland. The specific oil palm age, tree plantation species and crop types differed among regions so different plantation and crop types were measured in each location. Note that the forest condition differs substantially among the four regions. Each boxplot represents data from three replicates of each vegetation group.

Viewed Articles
CH4 and N2O emissions from smallholder agricultural systems on tropical peatlands in Southeast Asia
April 26 2023 | GLOBAL CHANGE BIOLOGY | This study, conducted by researchers from the University of Nottingham in collaboration with Indonesia and Malaysia, aimed to understand greenhouse gas (GHG) em
Read More
Eating healthy or wasting less? Reducing resource footprints of food consumption
April 29, 2021 | Environmental Research Letters | Source |  Introduction: Researchers from the University of Freiburg and University of Kassel (Germany), together with the Vienna University of Economi
An overview of underutilized benefits derived from Azolla as a promising biofertilizer in lowland rice production
January, 2023 | Heliyon | Source |  Introduction: Azolla, an aquatic fern with nitrogen-fixing capabilities through its symbiotic association with Aenabana azollae, has the potential to serve as an ec
Climate change and livestock production: a literature review
January 15, 2022 | Atmosphere | Source | Introduction: Livestock both drives and suffers from climate change, contributing 14.5% of global GHG emissions while facing growing climate-induced stress. Re
Opportunities for mitigating net system greenhouse gas emissions in Southeast Asian rice production: A systematic review
February 28, 2024 | Agriculture, Ecosystems & Environment | Source |  Introduction: Despite existing mitigation efforts, integrated approaches addressing system-wide emissions—including soil organic c
Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health
January 3, 2024 | Nature Communications | Source | Introduction: Conventional intensive farming boosts yields but also drives GHG emissions, soil degradation, and climate vulnerability, especially in
TOP