Search
Automated Tomato Fruit Detection for Efficient Harvesting

August 26, 2023 | Plants |

Introduction: A recent collaborative study by National United University, Taiwan, and HCMC University of Technology and Education, Vietnam, addresses the need for efficient and automated fruit harvesting in the agricultural sector, emphasizing the importance of a circular economy approach.

The Study: The agricultural industry faces a significant challenge in labor-intensive and inefficient harvesting processes. To tackle this issue, the research introduces three object classification models based on Yolov5m, incorporating BoTNet, ShuffleNet, and GhostNet convolutional neural networks (CNNs). These models are designed for the automatic detection of tomato fruit.

Key Findings: The study involved training these models using 1508 normalized images representing three classes of cherry tomatoes: ripe, immature, and damaged. The results were promising, with the modified Yolov5m + BoTNet model demonstrating impressive detection accuracy. Specifically, the model achieved detection accuracy rates of 94% for ripe tomatoes, 95% for immature tomatoes, and 96% for damaged tomatoes. These outcomes signify a substantial advancement in the development of automated harvesting systems for tomato fruit.

Conclusion: The study showcases the potential of automated systems in revolutionizing the agricultural sector, particularly in the context of fruit harvesting. By efficiently detecting different tomato classes, this technology offers a sustainable solution that aligns with the principles of a circular economy, where waste recovery and resource efficiency play pivotal roles in addressing the challenges faced by the agricultural industry.

Read more: Tomato Fruit Detection Using Modified Yolov5m Model with Convolutional Neural Networks

Source

Fig. | Real-world detection results obtained using the modified-Yolov5m-BoTNet model for: (a) ripe tomatoes, (b) immature tomatoes, (c) immature and damaged tomatoes, (d) ripe tomatoes, (e) immature tomatoes, and (f) damaged and immature tomatoes.

Viewed Articles
Automated Tomato Fruit Detection for Efficient Harvesting
August 26, 2023 | Plants | Introduction: A recent collaborative study by National United University, Taiwan, and HCMC University of Technology and Education, Vietnam, addresses the need for efficient
Nearly 15% of the seafood we produce each year is wasted. Here’s what needs to happen
April 11, 2024 | World Economic Forum | A recent report from the World Economic Forum reveals that 15% of fish and seafood in the global food chain goes to waste, despite their critical role in nutrit
Read More
Yield prediction through UAV-based multispectral imaging and deep learning in rice breeding trials
February, 2025 | Agricultural Systems |  Introduction: Accurate and timely yield prediction is critical for breeding trials, as it enables early elimination of poor-performing varieties and accelerate
Climate change impacts on crop breeding: Targeting interacting biotic and abiotic stresses for wheat improvement
July 06, 2023 | The Plant Genome |  Introduction: Researchers from CIMMYT (Mexico) and Mamoré Research and Innovation (UK) address a critical gap in wheat breeding research: the limited consideration
Harnessing Space Agriculture for Sustainable Earth-Based Controlled Environment Agriculture
June 29, 2023 | Nature Food | A collaborative research effort led by the University of Sheffield, University of Manchester, and Cranfield University in the UK has explored the potential of space contr
Digital transformation and precision farming as catalysts of rural development
July 14, 2025 | Land |  Introduction: Digital and precision agriculture are widely recognized for improving farm efficiency, yet less is known about their broader social and institutional effects on t
Soil organic matter content detection system based on high-temperature excitation principle
November 30, 2023 | Computers and Electronics in Agriculture |  Introduction: Precision agriculture involves using advanced technology to optimize crop growth, and soil organic matter for crop growth.
TOP