Search
Deep tillage enhanced soil organic carbon sequestration in China: A meta-analysis
Sources of information

Journal of Cleaner Production | May 1 2023
To combat rising carbon dioxide (CO2) levels, soil organic carbon (SOC) sequestration is being explored as a solution. Deep tillage (DT) is a method that can influence SOC storage across the soil profile, but its effectiveness under different conditions in China remains unclear. Researchers from the Chinese Academy of Agricultural Sciences conducted a meta-analysis of 447 field observations to evaluate the impact of DT on SOC stocks.
The results showed that DT significantly increased SOC stocks by 7.36% compared to conventional tillage (CT). Subsoiling, a type of DT, had a greater effect (8.76%) than deep ploughing (5.85%). Subsoiling enhanced SOC in the 0-40 cm soil layer, with the greatest increase seen at the 0-10 cm depth. Deep ploughing affected SOC between the 10-40 cm depth, while both techniques had no impact below 40 cm.
Subgroup analysis revealed that factors such as high rainfall, fine soil texture, residue retention, double cropping, and increased nitrogen fertilization promoted SOC stock under DT. The study provides valuable insights for SOC management to mitigate climate change, emphasizing the need to consider environmental factors and management practices when implementing DT for enhancing SOC sequestration in different regions of China. 

*
The effect of deep tillage (deep ploughing and subsoiling), subsoiling and deep ploughing on SOC storage compared with CT. Numbers in parentheses near the bars are the numbers of observations (Tillage, deep ploughing, and subsoiling in turn, respectively). Error bars symbolize 95% confidence intervals. 

 

Viewed Articles
Deep tillage enhanced soil organic carbon sequestration in China: A meta-analysis
Journal of Cleaner Production | May 1 2023To combat rising carbon dioxide (CO2) levels, soil organic carbon (SOC) sequestration is being explored as a solution. Deep tillage (DT) is a method that can
Read More
Blue carbon as a natural climate solution
November 1, 2021 | Nature Reviews Earth & Environment | Source | Introduction: An international research team from Australia, USA, Singapore, UK and Saudi Arabia, led by Deakin University (Australia)
Good fisheries management is good carbon management
March 21, 2024 | npj Ocean Sustain | Source |  Introduction: Climate change significantly affects marine ecosystems, exacerbated by overfishing and habitat degradation, weakening the ocean's capac
Greenhouse gas emissions and carbon sequestration in organic dehesa livestock farms. Does technical-economic management matters?
October 20, 2022 | Journal of Cleaner Production | Source |  Introduction: While organic livestock systems are often hailed as environmentally friendly, their greenhouse gas (GHG) emissions and carbon
Opportunities for coastal wetland restoration for blue carbon with co-benefits for biodiversity, coastal fisheries, and water quality
June 1, 2022 | Ecosystem Services | Source | Introduction: Coastal wetlands are crucial for capturing carbon dioxide and offering various ecosystem services. The research conducted jointly by scientis
Carbon sequestration via shellfish farming: A potential negative emissions technology
January, 2023 | Renewable and Sustainable Energy Reviews | Source |  Introduction: Achieving global climate goals requires practical, low-energy negative emissions technologies (NETs). Researchers fro
TOP