Search
Evaluating carbon sink potential of forest ecosystems under different climate change scenarios in Yunnan, Southwest Chin
Sources of information

Remote Sensing | March 4, 2023
Forests are crucial in the carbon budget of terrestrial ecosystems, and Nature-based Solutions (NbS) play a key role in carbon neutrality efforts. Beijing Normal University conducted a study to understand the carbon dynamics of southwestern forests under different climate change scenarios. Using the Forest Ecosystem Carbon Budget Model for China (FORCCHN), they simulated the carbon sink potential of these ecosystems driven by downscaled global climate model data.
The findings reveal that gross primary productivity (GPP), ecosystem respiration (ER), and net primary productivity (NPP) are projected to increase from 2020 to 2060. Forests will act as carbon sinks, but net ecosystem productivity (NEP) will peak in the 2030s and decline thereafter. The SSP1-2.6 scenario demonstrates higher NEP and greater stability compared to other scenarios. Northwest and central Yunnan regions exhibit significant carbon sequestration potential, with a slight upward trend in NEP in the future.
Temperature has a strong positive correlation with GPP and ER, while precipitation has minimal influence. However, increasing temperatures may negatively impact forest carbon sinks. These findings guide forest management strategies and contribute to sustainable development goals, informing decisions on forest conservation and carbon sequestration.

   *
Spatial distribution of carbon flux trends in Yunnan Province from 2020 to 2060 under different emission scenarios: (a) SSP1-2.6; (b) SSP2-4.5; and (c) SSP5-8.5.

 

Viewed Articles
Evaluating carbon sink potential of forest ecosystems under different climate change scenarios in Yunnan, Southwest Chin
Evaluating carbon sink potential of forest ecosystems under different climate change scenarios in Yunnan, Southwest China
Read More
Prospects for integration of carbon and biodiversity credits: an Australian case study review
November 12, 2024 | Sustainability Science |  Introduction: This review, conducted by an international research team from Queensland University of Technology and the University of Queensland in Austra
Carbon sequestration via shellfish farming: A potential negative emissions technology
January, 2023 | Renewable and Sustainable Energy Reviews | Source |  Introduction: Achieving global climate goals requires practical, low-energy negative emissions technologies (NETs). Researchers fro
Priority areas to protect mangroves and maximise ecosystem services
September 21, 2023 | Nature Communications | Source | Introduction: Human activities are threatening global biodiversity and the ecosystem services provided by mangroves. Current conservation efforts
Good fisheries management is good carbon management
March 21, 2024 | npj Ocean Sustain | Source |  Introduction: Climate change significantly affects marine ecosystems, exacerbated by overfishing and habitat degradation, weakening the ocean's capac
Soil carbon sequestration by agroforestry systems in China: A meta-analysis
August 1, 2021 | Agriculture, Ecosystems & Environment | Source |  Introduction: Agroforestry systems (AFS) play a vital role in soil conservation and climate change mitigation in China, yet quantitat
TOP