Search
Subsurface fertilization boosts crop yields and lowers greenhouse gas emissions: A global meta-analysis
Sources of information

June 10, 2023 | Science of The Total Environment |
Subsurface application (SA) of nitrogenous fertilizers offers a promising solution to address climate change and ensure food security. Researchers from Gyeongsang National University, Korea, and Sher-e-Bangla Agricultural University, Bangladesh, conducted a comprehensive meta-analysis to assess the impact of SA technology on greenhouse gas (GHG) emissions, crop yield, nitrogen uptake (NU), and soil nitrogen levels.
Findings from 40 peer-reviewed studies reveal that SA technology significantly boosts rice yields by 32% and crop yield in upland systems by 62% compared to surface application of nitrogen (N). Notably, the greatest yield increases were observed at lower N input rates in rice paddies and medium N input rates in upland systems, indicating the influence of soil moisture on SA effectiveness.
SA treatments lead to substantial NU increases, with 34% in rice paddies and 18% in upland systems, while curbing ammonia (NH3) emissions and carbon footprint (CF) by 29% and 36% respectively. Additionally, SA demonstrates significant reductions in methane (CH4) and nitrous oxide (N2O) emissions, resulting in a 10% decrease in global warming potential (GWP) during paddy cultivation.
This meta-analysis highlights the dual benefits of SA technology: mitigating climate change by reducing GHG emissions and enhancing food security through improved crop yield and nutrient uptake. It underscores the potential of SA as a sustainable agricultural practice for a resilient future.

 

Graphical abstract


 

Viewed Articles
Subsurface fertilization boosts crop yields and lowers greenhouse gas emissions: A global meta-analysis
June 10, 2023 | Science of The Total Environment |Subsurface application (SA) of nitrogenous fertilizers offers a promising solution to address climate change and ensure food security. Researchers fro
Read More
Greenhouse gas emission from rice fields: a review from Indian context
April 27, 2021 | Environmental Science and Pollution Research | Source |  Introduction: This review, led by scientists from the Department of Environmental Sciences at Central University of Jharkhand
Opportunities for mitigating net system greenhouse gas emissions in Southeast Asian rice production: A systematic review
February 28, 2024 | Agriculture, Ecosystems & Environment | Source | Introduction: Southeast Asia (SEA) produces 28% of global rice. As flooded rice fields account for nearly half of global crop-relat
Greenhouse gas mitigation requires caution
June 6, 2024 | Science | Source | Introduction: Methane (CH₄) and nitrous oxide (N₂O), greenhouse gases (GHGs) far more potent than CO₂, are emitted via microbial activity in diverse ecosystems. Biolo
Future carbon emissions from global mangrove forest loss
February 28, 2021 | Global Change Biology | Source |  Introduction: Mangroves significantly contribute to global climate mitigation by storing substantial carbon, yet their continuous loss poses major
Optimizing agricultural management in China for soil greenhouse gas emissions and yield balance: A regional heterogeneity perspective
May 1, 2024 | Journal of Cleaner Production | Source |  Introduction: Region-specific strategies are critical for China to balance crop production and environmental sustainability. This study, led by
TOP