Search
A redistribution of nitrogen fertilizer across global croplands can help achieve food security within environmental boundaries

September 28, 2023 | Communications Earth & Environment 

Introduction: Producing enough food for a growing global population while reducing environmental pollution and climate impact is a major challenge. From simulating global cereal cropping systems, the researchers from Karlsruhe Institute of Technology (KIT) in Germany proposed a strategy of optimizing fertilizer application across global croplands of major cereal crops such as maize, wheat, and rice. 

 Key findings: The current cereal production levels could be maintained with a 32% reduction in total global fertilizer use. Alternatively, cereal production could be increased by 15% with current nitrogen fertilizer levels. This redistribution approach not only ensures food production but also leads to substantial reductions in nitrogen pollution. Moreover, a more equitable distribution of nitrogen fertilizer across global croplands could reduce pollution on in heavily fertilized regions such as East Asia, and allow areas like Sub-Saharan Africa to move towards self-sufficiency.

 Read more: A redistribution of nitrogen fertiliser across global croplands can help achieve food security within environmental boundaries

Fig. | Regional changes in cereal yield, N-fertiliser usage, N2O emissions and NO3− leaching. Changes are shown relative to the baseline scenario. 

Viewed Articles
A redistribution of nitrogen fertilizer across global croplands can help achieve food security within environmental boundaries
September 28, 2023 | Communications Earth & Environment |  Introduction: Producing enough food for a growing global population while reducing environmental pollution and climate impact is a major chal
Read More
An overview of underutilized benefits derived from Azolla as a promising biofertilizer in lowland rice production
January, 2023 | Heliyon | Source |  Introduction: Azolla, an aquatic fern with nitrogen-fixing capabilities through its symbiotic association with Aenabana azollae, has the potential to serve as an ec
Toward Low-Carbon Rice Production in China: Historical Changes, Driving Factors, and Mitigation Potential
March 19, 2024 | Environmental Science & Technology | Source |  Introduction: This study, conducted by researchers from Hunan University and the Chinese Academy of Sciences, evaluates the historical c
Climate change and livestock production: a literature review
January 15, 2022 | Atmosphere | Source | Introduction: Livestock both drives and suffers from climate change, contributing 14.5% of global GHG emissions while facing growing climate-induced stress. Re
Greenhouse gas emissions and carbon sequestration in organic dehesa livestock farms. Does technical-economic management matters?
October 20, 2022 | Journal of Cleaner Production | Source |  Introduction: While organic livestock systems are often hailed as environmentally friendly, their greenhouse gas (GHG) emissions and carbon
The potential of biochar incorporation into agricultural soils to promote sustainable agriculture: Insights from soil health, crop productivity, greenhouse gas emission mitigation and feasibility perspectives—A critical review
November 11, 2024 | Reviews in Environmental Science and Bio/Technology | Source |  Introduction: Addressing the growing threat of soil degradation, researchers from the University of Prince Edward Is
TOP