Search
Going back to grassland? Assessing the impact of groundwater decline on irrigated agriculture using remote sensing data
Sources of information

Remote Sensing | March 21, 2023

Climate change has increased the risk of agricultural drought in arid and semi-arid regions worldwide. To adapt, farmers often shift to more drought-tolerant crops or permanently switch back to grassland. Understanding the impact of declining groundwater levels on this decision-making process is crucial. Researchers from New Mexico Tech conducted a study in Union County, New Mexico, to explore how groundwater level decline affects the propensity of cropland switching back to grassland.

The study integrated field-scale groundwater level projections and high-resolution remote sensing data on crop choices. Using a regression analysis framework, they found that as the groundwater level in the Ogallala Aquifer declined, cropland in the area gradually and permanently shifted back to grassland. For every one-standard-deviation decline in groundwater level, there was an average 1.85% increase in the likelihood of switching back to grassland, which is a natural carbon sink.

The findings consider the fact that farmers explore other options before permanently switching back, such as growing more drought-tolerant crops or implementing land idling and rotation. The study concludes by discussing the policy implications for long-term land and water conservation.

This research provides valuable insights into the effects of declining groundwater levels on agricultural practices, helping inform sustainable land and water management policies in drought-prone regions.

*
A standard 400 m radius irrigated field (field #2) in its transition into grassland (left panel) compared to the remotely sensed Crop Data Layer (right panel, 2019 data) of the same location. Data Source: NASS, USDA; Google Maps. Note: The remote sensing data in the right panel indicate that corn (in dark green) was grown in fields #1, #3, and #4 in 2019. Later, in 2021 (corresponding to the time of the left panel Google Maps imagery), field #3 was in idle status and fields #1 and #4 still had corn.

 

Viewed Articles
Going back to grassland? Assessing the impact of groundwater decline on irrigated agriculture using remote sensing data
Remote Sensing | March 21, 2023Climate change has increased the risk of agricultural drought in arid and semi-arid regions worldwide. To adapt, farmers often shift to more drought-tolerant crops or pe
Read More
Assessing the Impact of Crop Residue Cover on Agriculture and Soil Quality Using Remote Sensing
September 12, 2023 | Scientific Reports | Introduction: Crop residue cover (CRC) is a critical but understudied factor in agriculture's impact on both productivity and soil quality. Researchers fr
Precise irrigation water and nitrogen management improve water and nitrogen use efficiencies under conservation agriculture in the maize-wheat systems
July 26, 2023 | Scientific Reports |  Introduction: Over a three-year field experiment aimed at addressing underground water depletion and ensuring agrifood system sustainability, researchers from Int
Harnessing Space Agriculture for Sustainable Earth-Based Controlled Environment Agriculture
June 29, 2023 | Nature Food | A collaborative research effort led by the University of Sheffield, University of Manchester, and Cranfield University in the UK has explored the potential of space contr
Big Data and precision agriculture: a novel spatio-temporal semantic IoT data management framework for improved interoperability
Aril 28, 2023 | JOURNAL OF BIG DATA Researchers from Spain have developed an innovative system for managing spatial, temporal, and semantic data in precision agriculture within the realm of the Intern
Enhancing climate change resilience in agricultural crops
December 04, 2023 | Current Biology |  Introduction: To ensure food security for a burgeoning global population, a 28% increase in global agricultural production is required over the next decade. Howe
TOP