Search
Going back to grassland? Assessing the impact of groundwater decline on irrigated agriculture using remote sensing data
Sources of information

Remote Sensing | March 21, 2023

Climate change has increased the risk of agricultural drought in arid and semi-arid regions worldwide. To adapt, farmers often shift to more drought-tolerant crops or permanently switch back to grassland. Understanding the impact of declining groundwater levels on this decision-making process is crucial. Researchers from New Mexico Tech conducted a study in Union County, New Mexico, to explore how groundwater level decline affects the propensity of cropland switching back to grassland.

The study integrated field-scale groundwater level projections and high-resolution remote sensing data on crop choices. Using a regression analysis framework, they found that as the groundwater level in the Ogallala Aquifer declined, cropland in the area gradually and permanently shifted back to grassland. For every one-standard-deviation decline in groundwater level, there was an average 1.85% increase in the likelihood of switching back to grassland, which is a natural carbon sink.

The findings consider the fact that farmers explore other options before permanently switching back, such as growing more drought-tolerant crops or implementing land idling and rotation. The study concludes by discussing the policy implications for long-term land and water conservation.

This research provides valuable insights into the effects of declining groundwater levels on agricultural practices, helping inform sustainable land and water management policies in drought-prone regions.

*
A standard 400 m radius irrigated field (field #2) in its transition into grassland (left panel) compared to the remotely sensed Crop Data Layer (right panel, 2019 data) of the same location. Data Source: NASS, USDA; Google Maps. Note: The remote sensing data in the right panel indicate that corn (in dark green) was grown in fields #1, #3, and #4 in 2019. Later, in 2021 (corresponding to the time of the left panel Google Maps imagery), field #3 was in idle status and fields #1 and #4 still had corn.

 

Viewed Articles
Going back to grassland? Assessing the impact of groundwater decline on irrigated agriculture using remote sensing data
Remote Sensing | March 21, 2023Climate change has increased the risk of agricultural drought in arid and semi-arid regions worldwide. To adapt, farmers often shift to more drought-tolerant crops or pe
Read More
The q-rung fuzzy LOPCOW-VIKOR model to assess the role of unmanned aerial vehicles for precision agriculture realization in the Agri-Food 4.0 era
April 2023 | ARTIFICIAL INTELLIGENCE REVIEWAfyon Kocatepe University in Turkey conducted a study focusing on smart agriculture and the role of unmanned aerial vehicles (UAVs) in this field. UAVs have
A hybrid sustainability performance measurement approach for fresh food cold supply chains
April 20, 2023 | Journal of Cleaner Production | Source |  Introduction: Fresh food cold supply chains (CSCs) in developing countries face major sustainability issues, including food waste, high energ
Digital mapping of the soil available water capacity: tool for the resilience of agricultural systems to climate change
July 15, 2023 | Science of The Total EnvironmentSoil plays a crucial role in agriculture, but understanding its water-holding capacity, called available water capacity (AWC), can be challenging. Tradi
Automated Tomato Fruit Detection for Efficient Harvesting
August 26, 2023 | Plants | Introduction: A recent collaborative study by National United University, Taiwan, and HCMC University of Technology and Education, Vietnam, addresses the need for efficient
Carbon mitigation in agriculture: Pioneering technologies for a sustainable food system
May 1, 2024 | Trends in Food Science & Technology | Source | Introduction: Agriculture significantly contributes to greenhouse gas emissions, affecting climate change and global food security. Researc
TOP