Search
Red-green-blue to normalized difference vegetation index translation: a robust and inexpensive approach for vegetation monitoring using machine vision and generative adversarial networks
Sources of information

Precision Agriculture | Mar 7, 2023

Researchers from the University of Prince Edward Island in Canada have developed an innovative and cost-effective protocol for monitoring plant health in agricultural fields using high-resolution multispectral imaging. By leveraging machine vision (MV) and generative adversarial networks (GAN), they were able to convert standard red-green-blue (RGB) imagery captured by unmanned aerial vehicles (UAVs) into valuable normalized difference vegetation index (NDVI) maps.

Traditionally, NDVI maps were generated from near-infrared (NIR) imagery, but this study directly translated RGB imagery into NDVI, making it more accessible and affordable. The researchers tested the protocol using a fixed-wing UAV equipped with a RedEdge-MX sensor to capture images from different potato fields throughout the 2021 growing season.

By training and evaluating GAN models, particularly Pix2Pix and Pix2PixHD, they found that Pix2PixHD outperformed Pix2Pix in terms of accuracy and performance. The protocol demonstrated breakthrough results, enabling cost-effective monitoring of vegetation and orchard health. The trained GANs can generate useful vegetation index maps for precision agriculture practices, including variable rate applications. Additionally, the protocol has the potential to analyze remote sensing imagery of large-scale agricultural fields and commercial orchards, extracting essential information about plant health indicators.

This study presents an exciting advancement in economically monitoring plant health and offers valuable insights for precision agriculture and remote sensing applications.

Generated dataset sample for the training of generative adversarial networks used in the design of the proposed protocol. The left image represents the input image which is the combination of the red, green, and blue channels, while the target image is the NDVI image which is the computation index of the red and near-infrared channels.

 

 

 

 

Viewed Articles
Red-green-blue to normalized difference vegetation index translation: a robust and inexpensive approach for vegetation monitoring using machine vision and generative adversarial networks
Precision Agriculture | Mar 7, 2023Researchers from the University of Prince Edward Island in Canada have developed an innovative and cost-effective protocol for monitoring plant health in agricultura
Read More
Precise irrigation water and nitrogen management improve water and nitrogen use efficiencies under conservation agriculture in the maize-wheat systems
July 26, 2023 | Scientific Reports |  Introduction: Over a three-year field experiment aimed at addressing underground water depletion and ensuring agrifood system sustainability, researchers from Int
Sustainable irrigation and climate feedbacks
August 17, 2023 | Nature Food | Introduction: The study conducted by the University of Minnesota, Colorado State University, Chongqing University, and other institutions in the US and China delves int
Digitalization, sustainability, and coffee. Opportunities and challenges for agricultural development
May 2023 | AGRICULTURAL SYSTEMS The University of Hohenheim in Germany, in collaboration with researchers from Austria, conducted a study to assess the potential of digital technologies in addressing
Harnessing Space Agriculture for Sustainable Earth-Based Controlled Environment Agriculture
June 29, 2023 | Nature Food | A collaborative research effort led by the University of Sheffield, University of Manchester, and Cranfield University in the UK has explored the potential of space contr
Digital transformation and precision farming as catalysts of rural development
July 14, 2025 | Land |  Introduction: Digital and precision agriculture are widely recognized for improving farm efficiency, yet less is known about their broader social and institutional effects on t
TOP