Search
Red-green-blue to normalized difference vegetation index translation: a robust and inexpensive approach for vegetation monitoring using machine vision and generative adversarial networks
Sources of information

Precision Agriculture | Mar 7, 2023

Researchers from the University of Prince Edward Island in Canada have developed an innovative and cost-effective protocol for monitoring plant health in agricultural fields using high-resolution multispectral imaging. By leveraging machine vision (MV) and generative adversarial networks (GAN), they were able to convert standard red-green-blue (RGB) imagery captured by unmanned aerial vehicles (UAVs) into valuable normalized difference vegetation index (NDVI) maps.

Traditionally, NDVI maps were generated from near-infrared (NIR) imagery, but this study directly translated RGB imagery into NDVI, making it more accessible and affordable. The researchers tested the protocol using a fixed-wing UAV equipped with a RedEdge-MX sensor to capture images from different potato fields throughout the 2021 growing season.

By training and evaluating GAN models, particularly Pix2Pix and Pix2PixHD, they found that Pix2PixHD outperformed Pix2Pix in terms of accuracy and performance. The protocol demonstrated breakthrough results, enabling cost-effective monitoring of vegetation and orchard health. The trained GANs can generate useful vegetation index maps for precision agriculture practices, including variable rate applications. Additionally, the protocol has the potential to analyze remote sensing imagery of large-scale agricultural fields and commercial orchards, extracting essential information about plant health indicators.

This study presents an exciting advancement in economically monitoring plant health and offers valuable insights for precision agriculture and remote sensing applications.

Generated dataset sample for the training of generative adversarial networks used in the design of the proposed protocol. The left image represents the input image which is the combination of the red, green, and blue channels, while the target image is the NDVI image which is the computation index of the red and near-infrared channels.

 

 

 

 

Viewed Articles
Red-green-blue to normalized difference vegetation index translation: a robust and inexpensive approach for vegetation monitoring using machine vision and generative adversarial networks
Precision Agriculture | Mar 7, 2023Researchers from the University of Prince Edward Island in Canada have developed an innovative and cost-effective protocol for monitoring plant health in agricultura
Read More
Digital mapping of the soil available water capacity: tool for the resilience of agricultural systems to climate change
July 15, 2023 | Science of The Total EnvironmentSoil plays a crucial role in agriculture, but understanding its water-holding capacity, called available water capacity (AWC), can be challenging. Tradi
Precise irrigation water and nitrogen management improve water and nitrogen use efficiencies under conservation agriculture in the maize-wheat systems
July 26, 2023 | Scientific Reports |  Introduction: Over a three-year field experiment aimed at addressing underground water depletion and ensuring agrifood system sustainability, researchers from Int
Application of Machine Learning Techniques to Discern Optimal Rearing Conditions for Improved Black Soldier Fly Farming
May 19, 2023 | INSECTSThis study, conducted by researchers from Kenya and the USA, aimed to address global food insecurity by exploring alternative sources of feed and food production. They focused on
The q-rung fuzzy LOPCOW-VIKOR model to assess the role of unmanned aerial vehicles for precision agriculture realization in the Agri-Food 4.0 era
April 2023 | ARTIFICIAL INTELLIGENCE REVIEWAfyon Kocatepe University in Turkey conducted a study focusing on smart agriculture and the role of unmanned aerial vehicles (UAVs) in this field. UAVs have
Digitalization, sustainability, and coffee. Opportunities and challenges for agricultural development
May 2023 | AGRICULTURAL SYSTEMS The University of Hohenheim in Germany, in collaboration with researchers from Austria, conducted a study to assess the potential of digital technologies in addressing
TOP