Search
Red-green-blue to normalized difference vegetation index translation: a robust and inexpensive approach for vegetation monitoring using machine vision and generative adversarial networks
Sources of information

Precision Agriculture | Mar 7, 2023

Researchers from the University of Prince Edward Island in Canada have developed an innovative and cost-effective protocol for monitoring plant health in agricultural fields using high-resolution multispectral imaging. By leveraging machine vision (MV) and generative adversarial networks (GAN), they were able to convert standard red-green-blue (RGB) imagery captured by unmanned aerial vehicles (UAVs) into valuable normalized difference vegetation index (NDVI) maps.

Traditionally, NDVI maps were generated from near-infrared (NIR) imagery, but this study directly translated RGB imagery into NDVI, making it more accessible and affordable. The researchers tested the protocol using a fixed-wing UAV equipped with a RedEdge-MX sensor to capture images from different potato fields throughout the 2021 growing season.

By training and evaluating GAN models, particularly Pix2Pix and Pix2PixHD, they found that Pix2PixHD outperformed Pix2Pix in terms of accuracy and performance. The protocol demonstrated breakthrough results, enabling cost-effective monitoring of vegetation and orchard health. The trained GANs can generate useful vegetation index maps for precision agriculture practices, including variable rate applications. Additionally, the protocol has the potential to analyze remote sensing imagery of large-scale agricultural fields and commercial orchards, extracting essential information about plant health indicators.

This study presents an exciting advancement in economically monitoring plant health and offers valuable insights for precision agriculture and remote sensing applications.

Generated dataset sample for the training of generative adversarial networks used in the design of the proposed protocol. The left image represents the input image which is the combination of the red, green, and blue channels, while the target image is the NDVI image which is the computation index of the red and near-infrared channels.

 

 

 

 

Viewed Articles
Red-green-blue to normalized difference vegetation index translation: a robust and inexpensive approach for vegetation monitoring using machine vision and generative adversarial networks
Precision Agriculture | Mar 7, 2023Researchers from the University of Prince Edward Island in Canada have developed an innovative and cost-effective protocol for monitoring plant health in agricultura
Read More
Innovative processes in smart packaging. A systematic review
March 13, 2022 | Journal of the Science of Food and Agriculture | Source |  Introduction: Food loss and waste are major environmental concerns, contributing to 29% of global GHG emissions, with especi
Automated Tomato Fruit Detection for Efficient Harvesting
August 26, 2023 | Plants | Introduction: A recent collaborative study by National United University, Taiwan, and HCMC University of Technology and Education, Vietnam, addresses the need for efficient
AnimalAccML: An open-source graphical user interface for automated behavior analytics of individual animals using triaxial accelerometers and machine learning
June 2023 | COMPUTERS AND ELECTRONICS IN AGRICULTUREThe University of Georgia conducted a study to design and develop a user-friendly tool for customized machine learning model development and animal
Review of artificial intelligence and internet of things technologies in land and water management research during 1991-2021: A bibliometric analysis
August 2023 | ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE The Indian Agricultural Research Institute conducted a study to address the challenges faced by agricultural systems and food security
Context-specific assessments of carbon footprints of the rice value chain: from product labeling to potential mitigation impacts
June 5, 2023 | International Journal of Life Cycle Assessment | Source |  Introduction: The study, led by researchers from the International Rice Research Institute (IRRI), investigates innovative too
TOP