Search
Predicting site-specific economic optimal nitrogen rate using machine learning methods and on-farm precision experimentation
Sources of information

Precision Agriculture | April 20, 2023

Researchers from the University of Nebraska conducted a study to improve nitrogen (N) fertilizer management in winter crops like wheat and barley. By applying the economic optimal nitrogen rate (EONR), farmers can enhance N fertilizer efficiency, increase profits, and reduce environmental impacts. The study utilized on-farm precision experimentation (OFPE) to collect extensive data for estimating the EONR.

Machine learning techniques, specifically generalized additive models (GAM) and random forest (RF), were employed to predict crop yields and EONR. The models analyzed various factors such as soil conditions, terrain characteristics, and remote-sensed variables.

The results showed that both GAM and RF models accurately predicted crop yields with an average error of 13.7%. However, the estimated EONR values differed significantly between the two models. Soil phosphorus availability and organic matter content emerged as influential factors, but their impact varied across fields.

The study highlights the importance of site-specific considerations when determining the EONR, as different fields may require tailored nitrogen recommendations. Further research is needed to refine machine learning methods and ensure reliable and automated N fertilizer recommendations as agriculture transitions into the digital era.

Location of experimental sites (A, B) and an example of the Data-Intensive Farm Management nitrogen trial (DIFM N-trial) (C, D) for Field_ID 1

Viewed Articles
Predicting site-specific economic optimal nitrogen rate using machine learning methods and on-farm precision experimentation
Precision Agriculture | April 20, 2023Researchers from the University of Nebraska conducted a study to improve nitrogen (N) fertilizer management in winter crops like wheat and barley. By applying the
Read More
Enhancing climate change resilience in agricultural crops
December 04, 2023 | Current Biology |  Introduction: To ensure food security for a burgeoning global population, a 28% increase in global agricultural production is required over the next decade. Howe
Automated Tomato Fruit Detection for Efficient Harvesting
August 26, 2023 | Plants | Introduction: A recent collaborative study by National United University, Taiwan, and HCMC University of Technology and Education, Vietnam, addresses the need for efficient
Assessing the Impact of Crop Residue Cover on Agriculture and Soil Quality Using Remote Sensing
September 12, 2023 | Scientific Reports | Introduction: Crop residue cover (CRC) is a critical but understudied factor in agriculture's impact on both productivity and soil quality. Researchers fr
Application of Machine Learning Techniques to Discern Optimal Rearing Conditions for Improved Black Soldier Fly Farming
May 19, 2023 | INSECTSThis study, conducted by researchers from Kenya and the USA, aimed to address global food insecurity by exploring alternative sources of feed and food production. They focused on
Context-specific assessments of carbon footprints of the rice value chain: from product labeling to potential mitigation impacts
June 5, 2023 | International Journal of Life Cycle Assessment | Source |  Introduction: The study, led by researchers from the International Rice Research Institute (IRRI), investigates innovative too
TOP