Search
Predicting site-specific economic optimal nitrogen rate using machine learning methods and on-farm precision experimentation
Sources of information

Precision Agriculture | April 20, 2023

Researchers from the University of Nebraska conducted a study to improve nitrogen (N) fertilizer management in winter crops like wheat and barley. By applying the economic optimal nitrogen rate (EONR), farmers can enhance N fertilizer efficiency, increase profits, and reduce environmental impacts. The study utilized on-farm precision experimentation (OFPE) to collect extensive data for estimating the EONR.

Machine learning techniques, specifically generalized additive models (GAM) and random forest (RF), were employed to predict crop yields and EONR. The models analyzed various factors such as soil conditions, terrain characteristics, and remote-sensed variables.

The results showed that both GAM and RF models accurately predicted crop yields with an average error of 13.7%. However, the estimated EONR values differed significantly between the two models. Soil phosphorus availability and organic matter content emerged as influential factors, but their impact varied across fields.

The study highlights the importance of site-specific considerations when determining the EONR, as different fields may require tailored nitrogen recommendations. Further research is needed to refine machine learning methods and ensure reliable and automated N fertilizer recommendations as agriculture transitions into the digital era.

Location of experimental sites (A, B) and an example of the Data-Intensive Farm Management nitrogen trial (DIFM N-trial) (C, D) for Field_ID 1

Viewed Articles
Predicting site-specific economic optimal nitrogen rate using machine learning methods and on-farm precision experimentation
Precision Agriculture | April 20, 2023Researchers from the University of Nebraska conducted a study to improve nitrogen (N) fertilizer management in winter crops like wheat and barley. By applying the
Read More
The q-rung fuzzy LOPCOW-VIKOR model to assess the role of unmanned aerial vehicles for precision agriculture realization in the Agri-Food 4.0 era
April 2023 | ARTIFICIAL INTELLIGENCE REVIEWAfyon Kocatepe University in Turkey conducted a study focusing on smart agriculture and the role of unmanned aerial vehicles (UAVs) in this field. UAVs have
An integrated approach of remote sensing and geospatial analysis for modeling and predicting the impacts of climate change on food security
January 19, 2023 | Scientific Reports |  Introduction: Climate change threatens agriculture, infrastructure, and local communities. Monitoring and predicting climate impacts on food security is essent
Going deep: Roots, carbon, and analyzing subsoil carbon dynamics
January 01, 2024 | Molecular Plant | Source | Comment: Agricultural practices contribute significantly to atmospheric greenhouse gas emissions, with tillage accelerating soil disruption and carbon rel
Assessing the Impact of Crop Residue Cover on Agriculture and Soil Quality Using Remote Sensing
September 12, 2023 | Scientific Reports | Introduction: Crop residue cover (CRC) is a critical but understudied factor in agriculture's impact on both productivity and soil quality. Researchers fr
Digital mapping of the soil available water capacity: tool for the resilience of agricultural systems to climate change
July 15, 2023 | Science of The Total EnvironmentSoil plays a crucial role in agriculture, but understanding its water-holding capacity, called available water capacity (AWC), can be challenging. Tradi
TOP