Search
Energy-use efficiency of organic and conventional plant production systems in Germany

January 20, 2024 | Scientific Reports | Source

Introduction: Conventional farming practices requires high energy inputs, such as in the production and transportation of mineral nitrogen fertilizers. A German research team based in Technical University of Munich examines current technologies for reducing energy consumption and greenhouse gas emissions through innovations like precision farming and renewable energy integration, as well as compare the organic (OF) and conventional farming (CF) in terms of energy efficiency. 

Key findings: The results of analyzing energy input, output, and efficiency (EUE) across 30 pairs of arable and dairy farms show substantial heterogeneity between systems and individual farms, influenced by factors like crop rotation, fertilization intensity, and farm structure. OF generally exhibited lower energy input and output compared to CF, with higher EUE observed in dairy farming. Strategies to close the yield gap between OF and CF include plant breeding and optimizing crop rotations. Increasing EUE involves reducing fossil energy inputs and enhancing energy retention through renewable energy use and efficient technologies. Urgent reductions in fossil energy use are needed to mitigate climate change and reduce dependence. Comparing energy flux efficiency among farming systems offers insights into sustainable resource use.

 

Figure | Farming system-specific relationship between energy input and EUE (a) without organic fertilizers and (b) including organic fertilizer.

Viewed Articles
Energy-use efficiency of organic and conventional plant production systems in Germany
January 20, 2024 | Scientific Reports | Source | Introduction: Conventional farming practices requires high energy inputs, such as in the production and transportation of mineral nitrogen fertilizers.
Read More
Opportunities for mitigating net system greenhouse gas emissions in Southeast Asian rice production: A systematic review
February 28, 2024 | Agriculture, Ecosystems & Environment | Source |  Introduction: Despite existing mitigation efforts, integrated approaches addressing system-wide emissions—including soil organic c
Greenhouse gas emissions and carbon sequestration in organic dehesa livestock farms. Does technical-economic management matters?
October 20, 2022 | Journal of Cleaner Production | Source |  Introduction: While organic livestock systems are often hailed as environmentally friendly, their greenhouse gas (GHG) emissions and carbon
A conceptual framework for understanding the environmental impacts of ultra-processed foods and implications for sustainable food systems
September 25, 2022 | Journal of Cleaner Production | Source |  Introduction: Ultra-processed foods (UPFs) exacerbate the global food system’s failure by driving environmental harm, undermining nutriti
Climate change and livestock production: a literature review
January 15, 2022 | Atmosphere | Source | Introduction: Livestock both drives and suffers from climate change, contributing 14.5% of global GHG emissions while facing growing climate-induced stress. Re
Addressing dairy industry's scope 3 greenhouse gas emissions by efficiently managing farm carbon footprints
April, 2023 | Environmental Challenges | Source |  Introduction: Upstream greenhouse gas (GHG) emissions (i.e. scope 3)—accounting for 70–90% of the dairy industry’s total emissions—pose a persistent
TOP