Search
Spatiotemporal co-optimization of agricultural management practices towards climate-smart crop production

January 02, 2024 | Communications Earth & Environment | Source

Introduction: Research team based in Zhejiang University in China applies advanced modeling and machine learning to optimize farming practices in China's North China Plain, balancing high crop yields with reduced greenhouse gas emissions, considering factors like nitrogen use, irrigation, and crop residue management under current and future climate conditions. 

Key findings: Current farming practices, including local farmers' methods and trial-based recommendations, often exceed the optimal levels of water and fertilizer input. There is substantial potential for reducing resource inputs like fertilizer and irrigation water by 16% to 20% across the region, while also cutting greenhouse gas emissions. The optimized practices align with achieving maximum crop yields and minimizing environmental impact, crucial in a changing climate scenario. The soil organic carbon sequestration rates over time will decline yet management practices to local situations is needed to sustain agricultural productivity and mitigate climate-related risks.

 

Figure | A simulation framework enables spatiotemporal optimization of multiple management practices. The framework combines verification of biophysical models, machine learning, life cycle assessment and multi-objective optimization to derive the best management combination across space and over time under targets of interests.

Viewed Articles
Spatiotemporal co-optimization of agricultural management practices towards climate-smart crop production
January 02, 2024 | Communications Earth & Environment | Source | Introduction: Research team based in Zhejiang University in China applies advanced modeling and machine learning to optimize farming pr
Read More
Future carbon emissions from global mangrove forest loss
February 28, 2021 | Global Change Biology | Source |  Introduction: Mangroves significantly contribute to global climate mitigation by storing substantial carbon, yet their continuous loss poses major
Greenhouse gas mitigation requires caution
June 6, 2024 | Science | Source | Introduction: Methane (CH₄) and nitrous oxide (N₂O), greenhouse gases (GHGs) far more potent than CO₂, are emitted via microbial activity in diverse ecosystems. Biolo
Greenhouse gas emissions and carbon sequestration in organic dehesa livestock farms. Does technical-economic management matters?
October 20, 2022 | Journal of Cleaner Production | Source |  Introduction: While organic livestock systems are often hailed as environmentally friendly, their greenhouse gas (GHG) emissions and carbon
Greenhouse gas emission from rice fields: a review from Indian context
April 27, 2021 | Environmental Science and Pollution Research | Source |  Introduction: This review, led by scientists from the Department of Environmental Sciences at Central University of Jharkhand
Assessing the lifecycle greenhouse gas (GHG) emissions of perishable food products delivered by the cold chain in China
June 20, 2021 | Journal of Cleaner Production | Source | Introduction: Researchers from the University of Michigan (USA) analyzed the lifecycle GHG emissions of perishable foods—vegetables, fruits, me
TOP