Search
Utilization of Rhodopseudomonas palustris in crop rotation practice boosts rice productivity and soil nutrient dynamics

May 13, 2024 | Agriculture | Source

Introduction: Rice is a vital food crop, but its sustainability is threatened by excessive chemical use and monoculture practices. Crop rotation and the use of the beneficial bacterium Rhodopseudomonas palustris (R. palustris) can enhance soil health and rice yields. Researchers from National Pingtung University of Science and Technology in Taiwan explore the combined effects of crop rotation and R. palustris on rice growth, aiming to develop sustainable farming practices for better productivity and environmental health. 

Key findings: Beneficial microorganisms like Purple Non-Sulfur Bacteria (PNSB) increased 5-aminolevulinic acid (5-ALA) levels in plants, enhancing photosynthesis. Combining PNSB with crop rotation significantly improved soil fertility, resulting in notable increases in tiller numbers (163%), leaf chlorophyll content (13%), and lodging resistance (66%) compared to untreated plants. This combined treatment also boosted productive tillers per hill (112%), average grain per hill (65%), and grain fertility (26%), leading to a 65% increase in grain yield and a 15% rise in shoot dry weight. 

Additionally, PNSB treatment improved soil nutrient levels, including essential elements like phosphorus, potassium, calcium, and iron, further enhancing plant growth. Overall, the incorporation of PNSB in crop rotation strategies can significantly improve rice growth and yield, offering a sustainable approach to addressing global food security and climate change challenges.

 

Figure | Enhancement of rice growth and yield through incorporation of purple non-sulfur bacteria (PNSB) in rice-djulis rotation practice. (a) Depiction of the rice fields utilized in this study, where djulis was cultivated as a rotational crop within the same field and (b) a schematic representation of the experimental design implemented in this study.

Viewed Articles
Utilization of <span style="font-style:italic;">Rhodopseudomonas palustris</span> in crop rotation practice boosts rice productivity and soil nutrient dynamics
May 13, 2024 | Agriculture | Source | Introduction: Rice is a vital food crop, but its sustainability is threatened by excessive chemical use and monoculture practices. Crop rotation and the use of th
Read More
Greenhouse gas emission from rice fields: a review from Indian context
April 27, 2021 | Environmental Science and Pollution Research | Source |  Introduction: This review, led by scientists from the Department of Environmental Sciences at Central University of Jharkhand
Livestock greenhouse gas emission and mitigation potential in China
December 15, 2023 | Journal of Environmental Management | Source |  Introduction: Livestock production is a significant source of greenhouse gas emissions (GHGE) in China, challenging the country’s 20
Optimizing agricultural management in China for soil greenhouse gas emissions and yield balance: A regional heterogeneity perspective
May 1, 2024 | Journal of Cleaner Production | Source |  Introduction: Region-specific strategies are critical for China to balance crop production and environmental sustainability. This study, led by
Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health
January 3, 2024 | Nature Communications | Source | Introduction: Conventional intensive farming boosts yields but also drives GHG emissions, soil degradation, and climate vulnerability, especially in
Cradle-to-grave emissions from food loss and waste represent half of total greenhouse gas emissions from food systems
March 13, 2023 | Nature Food | Source |  Introduction: Food loss and waste (FLW) are major contributors to global GHG emissions, yet their full impact across the food system has been underexplored. A
TOP