Search
Utilization of Rhodopseudomonas palustris in crop rotation practice boosts rice productivity and soil nutrient dynamics

May 13, 2024 | Agriculture | Source

Introduction: Rice is a vital food crop, but its sustainability is threatened by excessive chemical use and monoculture practices. Crop rotation and the use of the beneficial bacterium Rhodopseudomonas palustris (R. palustris) can enhance soil health and rice yields. Researchers from National Pingtung University of Science and Technology in Taiwan explore the combined effects of crop rotation and R. palustris on rice growth, aiming to develop sustainable farming practices for better productivity and environmental health. 

Key findings: Beneficial microorganisms like Purple Non-Sulfur Bacteria (PNSB) increased 5-aminolevulinic acid (5-ALA) levels in plants, enhancing photosynthesis. Combining PNSB with crop rotation significantly improved soil fertility, resulting in notable increases in tiller numbers (163%), leaf chlorophyll content (13%), and lodging resistance (66%) compared to untreated plants. This combined treatment also boosted productive tillers per hill (112%), average grain per hill (65%), and grain fertility (26%), leading to a 65% increase in grain yield and a 15% rise in shoot dry weight. 

Additionally, PNSB treatment improved soil nutrient levels, including essential elements like phosphorus, potassium, calcium, and iron, further enhancing plant growth. Overall, the incorporation of PNSB in crop rotation strategies can significantly improve rice growth and yield, offering a sustainable approach to addressing global food security and climate change challenges.

 

Figure | Enhancement of rice growth and yield through incorporation of purple non-sulfur bacteria (PNSB) in rice-djulis rotation practice. (a) Depiction of the rice fields utilized in this study, where djulis was cultivated as a rotational crop within the same field and (b) a schematic representation of the experimental design implemented in this study.

Viewed Articles
Utilization of <span style="font-style:italic;">Rhodopseudomonas palustris</span> in crop rotation practice boosts rice productivity and soil nutrient dynamics
May 13, 2024 | Agriculture | Source | Introduction: Rice is a vital food crop, but its sustainability is threatened by excessive chemical use and monoculture practices. Crop rotation and the use of th
Read More
Climate-smart fisheries: CO2 emissions reduction and food security are complementary
January 1, 2024 | Marine Policy | Source | Introduction: As climate change impacts intensify, there is growing recognition of the need to align fisheries management with climate goals. In the Global N
Urban circular carbon economy through electrochemically influenced microbiomes
March 17, 2023 | One Earth | Source | Introduction: Food waste and wastewater are significant sources of carbon emissions in cities, but they also hold potential for turning waste into valuable resour
Circular bioeconomy in carbon footprint components of nonthermal processing technologies towards sustainable food system: A Review
April 30, 2024 | Trends in Food Science & Technology | Source | Introduction: A team of researchers from India, UK, and Belgium examines how nonthermal processing technologies and artificial intellige
Keeping the global consumption within the planetary boundaries
November 13, 2024 | Nature | Source |  Introduction: Researchers from Shandong University (China) and the University of Maryland (USA) investigate the global distribution of environmental footprints a
Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review
May 7, 2022 | Environmental Chemistry Letters | Source | Introduction: Biochar, a recycled material created from organic waste, has diverse applications across various sectors due to its role in clima
TOP