Search
Mitigating environmental burden of the refrigerated transportation sector: Carbon footprint comparisons of commonly used refrigeration systems and alternative cold storage systems

October 20, 2022 | Journal of Cleaner Production | Source |

Introduction: The cold chain in modern food systems helps reduce food waste but increases energy use, contributing to GHG emissions. Refrigeration accounts for 1% of global GHG emissions and 15% of electricity use. To address this, phase-change material-based cold storage systems (PCCSS) offers a lower-emission alternative to traditional systems. Researchers from University of Padova in Italy and from Guangzhou University in China evaluate the carbon footprint of traditional vapor-compression refrigeration systems (VCRS) versus phase-change material-based cold storage systems (PCCSS).

Key findings: Results show PCCSS can reduce carbon emissions by 22% to 56% compared to VCRS, especially in warmer climates. The use stage is the primary source of emissions for both systems, contributing 84%-91% for VCRS and about 68% for PCCSS. PCCSS's advantage is greater in regions with lower-emission electric grids. However, PCCSS's production and recycling stages have higher carbon footprints than VCRS. The study also highlights the importance of improving engine efficiency, utilizing cleaner electricity, and opting for low-GWP refrigerants to further reduce emissions.

 

Figure | The life cycle carbon footprint of both VCRS and PCCSS at three CO2 emissions factors (a, VCSS; and b, PCCSS). CTES: Cold thermal energy storage. Egz: Carbon footprint in Guangzhou. Esh: Carbon footprint in Shanghai. Ebi: Carbon footprint in Beijing.

Viewed Articles
Mitigating environmental burden of the refrigerated transportation sector: Carbon footprint comparisons of commonly used refrigeration systems and alternative cold storage systems
October 20, 2022 | Journal of Cleaner Production | Source | Introduction: The cold chain in modern food systems helps reduce food waste but increases energy use, contributing to GHG emissions. Refrige
Read More
What are the challenges and opportunities in implementing Taiwan's aquavoltaics policy? A roadmap for achieving symbiosis between small-scale aquaculture and photovoltaics
June 1, 2021 | Energy Policy | Source | Introduction: Taiwan has been advancing its renewable energy projects, including a policy that combines photovoltaics (PVs) with fishponds, known as aquavoltaic
Conventional agriculture increases global warming while decreasing system sustainability
November 4, 2024 | Nature Climate Change | Source |  Introduction: The research, led by scientists from South China Agricultural University (China) with a global team from Egypt, Russia, and Germany,
Optimizing agricultural management in China for soil greenhouse gas emissions and yield balance: A regional heterogeneity perspective
May 1, 2024 | Journal of Cleaner Production | Source |  Introduction: Region-specific strategies are critical for China to balance crop production and environmental sustainability. This study, led by
Optimized agricultural management reduces global cropland nitrogen losses to air and water
November 12, 2024 | Nature Food | Source |  Introduction: While nitrogen (N) inputs are essential for crop productivity, N losses from croplands contribute to major environmental issues, including cli
The development of fishery-photovoltaic complementary industry and the studies on its environmental, ecological and economic effects in China: A review
September 1, 2024 | Energy Nexus | Source | Introduction: In China, the fishery-photovoltaic complementary industry (FPCI, also known as aquavoltaics) merges aquaculture with solar energy by installin
TOP